Giải SGK Toán 12 (Kết nối tri thức): Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

1.4 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra chi tiết sách Toán 12 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Thực hành 1 trang 91 Toán 12 Tập 1: Cho các hàm số đa thức sau:

(1) y = 3x2+3x+1;

(2) y = x3 – 6x2 + 9;

(3) y = x4 – 4x2 + 3.

a) Tìm đạo hàm cấp một và đạo hàm cấp hai của các hàm số trên.

b) Tìm tất cả các điểm cực trị của các hàm số trên.

c) Vẽ đồ thị của các hàm số trên.

Lời giải:

(1) y = 3x2+3x+1.

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(3x2+3x+1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(3x2+3x+1, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(3x2+3x+1), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = 3x2+3x+1 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(2) y = x3 – 6x2 + 9

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x3 – 6x2 + 9), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(x3 – 6x2 + 9, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(x3 – 6x2 + 9), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = x3 – 6x2 + 9 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(3) y = x4 – 4x2 + 3

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(x4 – 4x2 + 3, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = x4 – 4x2 + 3 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Thực hành 2 trang 91 Toán 12 Tập 1: Cho các hàm số phân thức hữu tỉ sau:

(1) y = xx+2;

(2) y = 2x1x+1;

(3) y = x22x8x1;

(4) y = 5x+1+32x3.

a) Tìm đạo hàm cấp một của các hàm số trên.

b) Tìm các đường tiệm cận của đồ thị các hàm số trên.

c) Vẽ đồ thị của các hàm số trên.

Lời giải:

(1) y = xx+2

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(xx+2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(xx+2), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = xx+2 bằng cách nhập câu lệnh Asymptote(xx+2).

Bước 2: Vẽ đồ thị hàm số y = xx+2 bằng cách nhập hàm số y = xx+2 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(2) y = 2x1x+1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(2x1x+1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(2x1x+1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 2x1x+1 bằng cách nhập câu lệnh Asymptote(2x1x+1).

Bước 2: Vẽ đồ thị hàm số y = 2x1x+1bằng cách nhập hàm số y = 2x1x+1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(3) y = x22x8x1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x22x8x1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(x22x8x1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = x22x8x1 bằng cách nhập câu lệnh Asymptote(x22x8x1).

Bước 2: Vẽ đồ thị hàm số y = x22x8x1 bằng cách nhập hàm số y = x22x8x1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(4) y = 5x+1+32x3

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(5x+1+32x3), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(5x+1+32x3), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 5x+1+32x3 bằng cách nhập câu lệnh Asymptote(5x+1+32x3).

Bước 2: Vẽ đồ thị hàm số y = 5x+1+32x3 bằng cách nhập hàm số y = 5x+1+32x3 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Thực hành 3 trang 91 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4];

b) y = 3x4+4x2+2 trên đoạn [−1; 1];

c) y = x+5x trên đoạn [1; 10];

d) y = sin2x – x trên đoạn π2;π2.

Lời giải:

a) Để tìm giá trị lớn nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Max(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 40.

Để tìm giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Min(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 8.

b) Để tìm giá trị lớn nhất của hàm số y = 3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Max(3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 2,75.

Để tìm giá trị nhỏ nhất của hàm số y = 3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Min(3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 1,41.

c) Để tìm giá trị lớn nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Max(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 10,22.

Để tìm giá trị nhỏ nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Min(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 2,99.

d) Để tìm giá trị lớn nhất của hàm số y = sin2x – x trên đoạn π2;π2 ta dùng lệnh Max(sin2x – x, π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 0,34.

Để tìm giá trị nhỏ nhất của hàm số y = sin2x – x trên đoạn π2;π2 ta dùng lệnh Min( sin2x – x, π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là −0,34.

Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 3

Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Vẽ vectơ tổng của ba vectơ trong không gian bằng phần mêm GeoGebra

Độ dài gang tay (gang tay của bạn dài bao nhiêu?)

Bài 11. Nguyên hàm

Bài 12. Tích phân

Đánh giá

0

0 đánh giá