Thực hành 3 trang 91 Toán 12 Tập 1 Kết nối tri thức | Giải bài tập Toán 12

73

Với giải Thực hành 3 trang 91 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Thực hành 3 trang 91 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4];

b) y = 3x4+4x2+2 trên đoạn [−1; 1];

c) y = x+5x trên đoạn [1; 10];

d) y = sin2x – x trên đoạn π2;π2.

Lời giải:

a) Để tìm giá trị lớn nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Max(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 40.

Để tìm giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Min(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 8.

b) Để tìm giá trị lớn nhất của hàm số y = 3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Max(3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 2,75.

Để tìm giá trị nhỏ nhất của hàm số y = 3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Min(3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 1,41.

c) Để tìm giá trị lớn nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Max(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 10,22.

Để tìm giá trị nhỏ nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Min(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 2,99.

d) Để tìm giá trị lớn nhất của hàm số y = sin2x – x trên đoạn π2;π2 ta dùng lệnh Max(sin2x – x, π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 0,34.

Để tìm giá trị nhỏ nhất của hàm số y = sin2x – x trên đoạn π2;π2 ta dùng lệnh Min( sin2x – x, π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là −0,34.

Đánh giá

0

0 đánh giá