Giải Toán 8 trang 69 Tập 2 Cánh diều

389

Với lời giải Toán 8 trang 69 Tập 2 chi tiết trong Bài 4: Tính chất đường phân giác của tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 4: Tính chất đường phân giác của tam giác

Bài 1 trang 69 Toán 8 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CF. Biết AB = 4, BC = 5, CA = 6. Tính BD, CE, AF.

Lời giải:

Bài 1 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Áp dụng tính chất đường phân giác cho tam giác ABC, ta có:

 DBDC=ABAC (do AD là đường phân giác của góc BAC)

Suy ra DBBCDB=ABAC hay BD5BD=46

Do đó 6BD = 4(5 – BD)

          6BD = 20 – 4BD

          6BD + 4BD = 20

          10BD = 20

          BD = 2.

ECEA=BCBA (do BE là đường phân giác của góc ABC)

Suy ra ECACEC=BCBA hay CE6CE=54

Do đó 4CE = 5(6 – CE)

          4CE = 30 – 5CE

          4CE + 5CE = 30

          9CE = 30

          CE=309=103

FAFB=CACB (do CF là đường phân giác của góc ACB)

Suy ra FAABFA=CACB hay AF4AF=65

Do đó 5AF = 6(4 – AF)

          5AF = 24 – 6AF

          5AF + 6AF = 24

          11AF = 24

         AF=2411.

Bài 2 trang 69 Toán 8 Tập 2: Cho tam giác ABC có đường trung tuyến AM. Tia phân giác của góc ABC lần lượt cắt các đoạn thẳng AM, AC tại điểm D, E. Chứng minh ECEA=2DMDA.

Lời giải:

Bài 2 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo tính chất đường phân giác trong tam giác, ta có:

 ECEA=BCBA (do BE là đường phân giác của góc ABC trong ∆ABC);

 DMDA=BMBA (do BD là đường phân giác của góc ABM trong ∆ABM).

Mà BC = 2BM (do AM là đường trung tuyến của ∆ABC)

Suy ra ECEA=BCBA=2BMBA=2DMDA.

Vậy ECEA=2DMDA.

Bài 3 trang 69 Toán 8 Tập 2: Quan sát Hình 43 và chứng minh DBDC:EBEG=AGAC.

Bài 3 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 3 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

 DBDC=ABAC (do AD là đường phân giác của góc BAC trong ∆ABC);

 EBEG=ABAG (do AE là đường phân giác của góc BAG trong ∆ABG).

Suy ra: DBDC:EBEG=ABAC:ABAG=ABACAGAB=AGAC

Vậy DBDC:EBEG=AGAC.

Theo tính chất đường phân giác trong tam giác, ta có:

Bài 4 trang 69 Toán 8 Tập 2: Cho hình thoi ABCD (Hình 44). Điểm M thuộc cạnh AB thoả mãn AB = 3AM. Hai đoạn thẳng AC và DM cắt nhau tại N. Chứng minh ND = 3MN.

Bài 4 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 4 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Do ABCD là hình thoi nên AD = AB và AC là đường phân giác của góc BAC.

Xét ∆AMD có AN là đường phân giác góc MAD nên NDNM=ADAM

Hay NDNM=AD13AB (vì AB = 3AM)

Do đó NDNM=AB13AB=3

Vậy ND = 3MN

Bài 5 trang 69 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có AB = 3, AC = 4, AD là đường phân giác. Tính:

a) Độ dài các đoạn thẳng BC, DB, DC;

b) Khoảng cách từ điểm D đến đường thẳng AC;

c) Độ dài đường phân giác AD.

Lời giải:

Bài 5 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Xét tam giác ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 25 = 52

Suy ra BC = 5.

Theo tính chất đường phân giác trong tam giác, ta có: DBDC=ABAC (do AD là đường phân giác của góc BAC)

Suy ra DBBCDB=ABAC hay DB5DB=34

Do đó 4DB = 3(5 – DB)

          4DB = 15 – 3DB

          4DB + 3DB = 15

          7DB = 15

          DB=157

Khi đó DC=BCDB=5157=207

Vậy BC=5;  DB=157;  DC=207.

b) Kẻ DH ⊥ AC (H ∈ AC).

Suy ra DH // AB (cùng vuông góc với AC)

Áp dụng hệ quả của định lí Thalès trong tam giác ABC với DH // AB, ta có:

DHBA=CDCB hay DH3=2075

Suy ra DH=32075=127

Vậy khoảng cách từ điểm D đến đường thẳng AC là DH=127.

c) Xét tam giác ABC với DH // AB, ta có: AHAC=BDBC (hệ quả của định lí Thalès)

Hay AH4=1575, suy ra AH=41575=127

Xét tam giác AHD vuông tại H, ta có: AD2 = AH2 + DH2 (định lí Pythagore)

Suy ra AD2=1272+1272=28849

Do đó AD=28849=144249=12272=1227

Vậy độ dài đường phân giác AD là 1227.

Bài 6 trang 69 Toán 8 Tập 2: Cho tứ giác ABCD với các tia phân giác của các góc CAD và CBD cùng đi qua điểm E thuộc cạnh CD (Hình 45 . Chứng minh AD.BC = AC.BD.

Bài 6 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 6 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo tính chất đường phân giác trong hai tam giác ACD và BCD, ta có:

 ECED=ACAD (do AE là đường phân giác của góc CAD);

 ECED=BCBD (do BE là đường phân giác của góc CBD).

Suy ra ACAD=BCBD

Vậy AD.BC = AC.BD.

Đánh giá

0

0 đánh giá