Giải Toán 8 trang 68 Tập 2 Cánh diều

175

Với lời giải Toán 8 trang 68 Tập 2 chi tiết trong Bài 4: Tính chất đường phân giác của tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 4: Tính chất đường phân giác của tam giác

Luyện tập 3 trang 68 Toán 8 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CE. Chứng minh DBDCECEAFAFB=1.

Lời giải:

Luyện tập 3 trang 68 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Xét tam giác ABC với ba đường phân giác AD, BE, CF, ta có:

DBDC=ABAC;   ECEA=BCBA;   FAFB=CACB (tính chất đường phân giác)

Do đó DBDCECEAFAFB=ABACBCBACACB=ABBCCACAABBC=1.

Vậy DBDCECEAFAFB=1.

Luyện tập 4 trang 68 Toán 8 Tập 2: Cho tam giác ABC, điểm D thuộc cạnh BC sao cho DBDC=ABAC. Chứng minh AD là tia phân giác của góc BAC.

Lời giải:

Luyện tập 4 trang 68 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Từ B kẻ đường thẳng song song với AC, cắt AD tại K.

Vì BK // AC nên theo hệ quả của định lí Thalès, ta có: DBDC=BKAC

 DBDC=ABAC (giả thiết) nên BKAC=ABAC, do đó BK = AB.

Khi đó tam giác ABK cân tại B nên BAK^=BKA^

Mà BK // AC nên BKA^=KAC^ (hai góc so le trong)

Suy ra BAK^=KAC^

Vậy AD là đường phân giác trong tam giác BAC.

Đánh giá

0

0 đánh giá