Giải Toán 11 trang 112 Tập 2 Cánh diều

150

Với lời giải Toán 11 trang 112 Tập 2 chi tiết trong Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Hoạt động 4 trang 112 Toán 11 Tập 2: Hãy nêu lại công thức tính thể tích của khối lăng trụ đứng tam giác, khối lăng trụ đứng tứ giác.

Lời giải:

Thể tích của khối lăng trụ đứng tam giác, tứ giác đều được tính bằng công thức:

V = S.h.

 Trong đó S là diện tích đáy và h là chiều cao khối lăng trụ đứng tam giác.

Hoạt động 4 trang 112 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Luyện tập 4 trang 112 Toán 11 Tập 2: Tính thể tích của khối lăng trụ ABC.A’B’C’ biết tất cả các cạnh bằng a và hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB.

Lời giải:

Luyện tập 4 trang 112 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Gọi H là trung điểm của AB nên AH=AB2=a2.

Vì hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB nên A’H ⊥ (ABC).

Ta có: A’H ⊥ (ABC) và AB ⊂ (ABC) nên A’H ⊥ AB.

Áp dụng định lí Pythagore vào tam giác A’AH vuông tại H (do A’H ⊥ AB) có:

A’A2 = A’H2 + AH2

Do đó A'H=A'A2AH2=a2a22=a2a24=3a24=a32.

Xét ∆ABC đều có: CH là đường trung tuyến (do H là trung điểm của AB) nên CH cũng là đường cao của tam giác ABC hay CH ⊥ AB.

Áp dụng định lí Pythagore vào tam giác ACH vuông tại H (do CH ⊥ AB) có:

AC2 = AH2 + CH2

Do đó CH=AC2AH2=a2a22=a2a24=3a24=a32.

Khi đó, diện tích tam giác ABC có đường cao CH=a32 là:

SΔABC=12CH.AB=12.a32.a=a234 (đvdt)

Thể tích của khối lăng trụ ABC.A’B’C’ có chiều cao A'H=a32 và diện tích đáy SΔABC=a234 là:

VABC.A'B'C'=SΔABC.A'H=a234a32=3a38 (đvtt)

Đánh giá

0

0 đánh giá