Giải SBT Toán 11 trang 73 Tập 2 Cánh diều

302

Với lời giải SBT Toán 11 trang 73 Tập 2 chi tiết trong Bài 2: Các quy tắc tính đạo hàm sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Các quy tắc tính đạo hàm

Bài 12 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) = cos3x. Khi đó f’(x) bằng:

A. sin3x.

B. –sin3x.

C. –3sin3x.

D. 3sin3x.

Lời giải:

Đáp án đúng là: C

Ta có: f’(x) = (cos3x)’ = (–3x).sin3x = –3.sin3x.

Bài 13 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) = sin(x2). Khi đó f’(x) bằng:

A. 2xcos(x2).

B. cos(x2).

C. x2cos(x2).

D. 2xcos(2x).

Lời giải:

Đáp án đúng là: A

Ta có: f’(x) = [sin(x2)]’ = (x2)’.cos(x2) = 2xcos(x2).

Bài 14 trang 73 SBT Toán 11 Tập 2Cho hàm số fx=12x+3. Khi đó f’(x) bằng:

Cho hàm số f(x) = 1/(2x+3). Khi đó f’(x) bằng

Lời giải:

Đáp án đúng là: B

Ta có f'x=12x+3'=2x+3'2x+32=22x+32=22x+32.

Bài 15 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) = e2x. Khi đó f’(x) bằng:

A. e2x.

B. 2ex.

C. 2xe2x.

D. 2e2x.

Lời giải:

Đáp án đúng là: D

Ta có f’(x) = (e2x)’ = (2x)’.e2x = 2e2x.

Bài 16 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) = ln(3x). Khi đó f’(x) bằng:

Cho hàm số f(x) = ln(3x). Khi đó f’(x) bằng

Lời giải:

Đáp án đúng là: B

Ta có f'x=ln3x'=3x'3x=33x=1x.

Bài 17 trang 73 SBT Toán 11 Tập 2Tính đạo hàm của mỗi hàm số sau tại điểm x0 = 2:

a) fx=ex2+2x; b) gx=3x2x;

c) h(x) = 2x . 3x + 2; d) k(x) = log­3(x2 – x).

Lời giải:

a) Ta có: f'x=ex2+2x'=x2+2x'ex2+2x=2x+2ex2+2x.

Đạo hàm của hàm số trên tại điểm x0 = 2 là: f'2=22+2e22+22=6e8.

b) Ta có: g'x=3x2x'=32x'=32xln32.

Đạo hàm của hàm số trên tại điểm x0 = 2 là: g'2=322ln32=94ln32.

c) Ta có: h(x) = 2x . 3x + 2 = 2x.3x.9 = 9.6x.

Suy ra h’(x) = 9ln6.6x.

Đạo hàm của hàm số trên tại điểm x0 = 2 là: h’(2) = 9ln6.62 = 324ln6.

d) Ta có: k'x=log3x2x'=x2x'x2xln3=2x1xx1ln3.

Đạo hàm của hàm số trên tại điểm x0 = 2 là: k'2=221221ln3=32ln3.

Bài 18 trang 73 SBT Toán 11 Tập 2Tìm đạo hàm của mỗi hàm số sau:

a) fx=2cosx; b) g(x) = tan(x2);

c) h(x) = cos2(3x) – sin2(3x); d) kx=sin2x+exx.

Lời giải:

a) f'x=2x'sinx=22xsinx=sinxx.

b) g'x=x2'cos2x2=2xcos2x2.

c) h(x) = cos2(3x) – sin2(3x) = cos(6x).

Ta có: h’(x) = (6x)’.[–sin(6x)] –6sin6x.

d) k'x=sin2x'+exx'

=2sinxsinx'+ex'x+exx'

=2sinxcosx+exx+ex2x.

Bài 19 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) = 23x – 6. Giải phương trình f’(x) = 3ln2.

Lời giải:

f’(x) = (23x – 6)’ = (3x – 6)’. 23x – 6ln2 = 3ln2. 23x – 6. Khi đó:

f’(x) = 3ln2

 3ln2. 23x – 6 = 3ln2

 23x – 6 = 1

 3x – 6 = 0

 x = 2.

Vậy phương trình có nghiệm x = 2.

Bài 20 trang 73 SBT Toán 11 Tập 2Giải bất phương trình f’(x) < 0, biết:

a) f(x) = x3 – 9x2 + 24x; b) f(x) = –log5(x + 1).

Lời giải:

a) Ta có: f’(x) = 3x2 – 18x + 24.

Khi đó, f’(x) < 0 ⇔ 3x2 – 18x + 24 < 0

⇔ x2 – 6x + 8 < 0

⇔ (x – 2)(x – 4) < 0

⇔ 2 < x < 4.

Vậy bất phương trình có tập nghiệm là S = (2; 4).

b) Ta có: f'x=x+1'x+1ln5=1x+1ln5.

Khi đó, f’(x) < 0 1x+1ln5<0

⇔ x + 1 > 0

⇔ x > –1.

Vậy bất phương trình có tập nghiệm là S = (–1; +∞).

Bài 21 trang 73 SBT Toán 11 Tập 2Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi g(x) = [f(x)]2 + 2xf(x). Biết f’(0) = f(0) = 1. Tính g’(0)

Lời giải:

Ta có: g’(x) = 2f(x)f’(x) + (2x)’f(x) + 2xf’(x).

= 2f(x)f’(x) + 2f(x) + 2xf’(x).

Vậy g’(0) = 2f(0).f’(0) + 2.f(0) + 2.0.f’(0)

= 2.1.1 + 2.1 + 0 = 4.

Bài 22 trang 73 SBT Toán 11 Tập 2Cho hàm số y = x2 + 3x có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có:

a) Hoành độ bằng –1; b) Tung độ bằng 4.

Lời giải:

Hàm số y = f(x) = x2 + 3x.

f’(x) = (x2 + 3x)’ = 2x + 3.

a) Ta có f’(–1) = 2.(–1) + 3 = –2 + 3 = 1 và f(–1) = (–1)2 + 3.(–1) = 1 – 3 = –2.

Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng –1 là:

y = f’(–1)[x – (–1)] + f(–1)

Hay y = 1.(x + 1) – 2, tức là y = x – 1.

b) Gọi điểm có tọa độ (a; 4) là tiếp điểm của đồ thị (C) có tung độ bằng 4.

Khi đó ta có f(a) = 4

Suy ra a2 + 3a = 4

Hay a2 + 3a – 4 = 0

Do đó a = 1 hoặc a = –4.

Suy ra hai điểm M­1(1; 4) và M2(–4; 4).

Ta có f’(1) = 2.1 + 3 = 5 và f’(–4) = 2.(–4) + 3 = –8 + 3 = –5.

Trường hợp 1: Phương trình tiếp tuyến của đồ thị tại điểm 1(1; 4) là:

y = f’(1)(x – 1) + 4

Hay y = 5(x – 1) + 4, tức là y = 5x – 1.

Trường hợp 2: Phương trình tiếp tuyến của đồ thị tại điểm M2(–4; 4) là:

y = f’(–4)(x + 4) + 4

Hay y = –5(x + 4) + 4, tức là y = –5x – 16.

Đánh giá

0

0 đánh giá