Chứng minh với mọi n ∈ ℕ* (1 + căn 2)^n, (1-căn 2)^n lần lượt viết được ở dạng an+bn.căn 2 , an-bn.căn 2

1.6 K

Với giải Luyện tập 2 trang 26 Chuyên đề Toán 10 Cánh diều chi tiết trong Bài 1: Phương pháp quy nạp toán học giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 1: Phương pháp quy nạp toán học

Luyện tập 2 trang 26 Chuyên đề Toán 10: Chứng minh với mọi n ∈ ℕ*,(1+2)n(12)n lần lượt viết được ở dạng an+bn2,anbn2 , trong đó an, bn là các số nguyên dương.

Lời giải:

+) Khi n = 1, ta có:

 (1+2)1=1+2=1+1.2a1 = 1, b1 = 1.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (1+2)k+1 viết được dưới dạng ak+1+bk+12, trong đó ak + 1, bk + 1 là các số nguyên dương.

Thật vậy, theo giả thiết quy nạp ta có:

(1+2)k = ak+bk2, với ak, blà các số nguyên dương.

Khi đó:

Luyện tập 2 trang 26 Chuyên đề Toán 10 (ảnh 1)

Vì ak, blà các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ∈ ℕ*.

+) Theo chứng minh trên ta có:

Với mọi n ∈ ℕ* thì (1+2)nanbn2  với an, blà các số nguyên dương.

Chứng minh tương tự ta được:

Với mọi n ∈ ℕ* thì (12)n = cndn2 với cn, dlà các số nguyên dương.

Giờ ta chứng minh an = cn và bn = dn với mọi n  ℕ*.

Cách 1:

Xét mệnh đề P(n): an = cn và bn = dn với mọi n ∈ ℕ*.

+) Khi n = 1, ta có:

(1+2)1=1+2=1+1.2 a1 = 1, b1 = 1.

(12)1=12=11.2 c1 = 1, d1 = 1.

Vậy a1 = c1, b1 = d1.

Vậy mệnh đề P(n) đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề P(n) cũng đúng với k + 1, tức là: ak + 1 = ck + 1 và bk + 1 = dk + 1.

Thật vậy, theo giả thiết quy nạp ta có: ak = ck và bk = d(1).

Mặt khác:

Luyện tập 2 trang 26 Chuyên đề Toán 10 (ảnh 1)

 ak + 1 = ak + 2bk, bk + 1 = ak + bk (2).

Luyện tập 2 trang 26 Chuyên đề Toán 10 (ảnh 1)

nên ck + 1 = ck + 2dk, dk + 1 = ck + dk (3)

Từ (1), (2) và (3) ta suy ra ak + 1 = ck + 1 và bk + 1 = dk + 1.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ∈ ℕ*.

Vậy bài toán đã được chứng minh.

Cách 2:

Ta có:

(1+2)n12n=1+212n=1n

Luyện tập 2 trang 26 Chuyên đề Toán 10 (ảnh 1)

Từ (2) ta suy ra andn=bncnancn=bndn=k với k > 0 (vì an, bn, cn, dn  là các số nguyên dương)

an=kcn,bn=kdn. Thế vào (1) ta được:

kcncn2kdndn=1nkcn22dn2=1n

1    kk=1an = cn và bn = dn.

Vậy ta có điều phải chứng minh.

Xem thêm các bài giải Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:

Hoạt động trang 23 Chuyên đề Toán 10: Xét mệnh đề chứa biến P(n) : "1 + 3 + 5 + ... + (2n – 1) = n2" với n là số nguyên dương....

Luyện tập 1 trang 25 Chuyên đề Toán 10: Chứng minh rằng với mọi n ∈ ℕ* ta có:...

Luyện tập 3 trang 26 Chuyên đề Toán 10: Chứng minh 16n – 15n – 1 chia hết cho 225 với mọi n ∈ ℕ*....

Bài 1 trang 29 Chuyên đề Toán 10: Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n ∈ ℕ*....

Bài 2 trang 29 Chuyên đề Toán 10: Cho  và , với n ∈ ℕ*....

Bài 3 trang 29 Chuyên đề Toán 10: Cho , với n ∈ ℕ*....

Bài 4 trang 29 Chuyên đề Toán 10: Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 =   với n ∈ ℕ*....

Bài 5 trang 29 Chuyên đề Toán 10: Chứng minh với mọi n ∈ ℕ*, ta có:...

Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n – 1 với n ∈ ℕ*, n ≥ 2....

Bài 7 trang 29 Chuyên đề Toán 10: Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n ∈ ℕ*....

Bài 8 trang 29 Chuyên đề Toán 10: Cho tam giác đều màu xanh (Hình thứ nhất)....

Bài 9 trang 30 Chuyên đề Toán 10: Quan sát Hình 6....

Bài 10 trang 30 Chuyên đề Toán 10: Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/năm. Hết năm đầu tiên, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa. Hết năm thứ hai, cô Hạnh cũng không rút tiền ra và lại gửi thêm A (đồng) nữa. Cứ tiếp tục như vậy cho những năm sau. Chứng minh số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là  (đồng), nếu trong khoảng thời gian này lãi suất không thay đổi....

Bài 11 trang 30 Chuyên đề Toán 10: Một người gửi số tiền A (đồng) vào ngân hàng. Biểu lãi suất của ngân hàng như sau: Chia mỗi năm thành m kì hạn và lãi suất r%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thi cứ sau mỗi kì hạn, số tiển lãi sẽ được nhập vào vốn ban đầu. Chứng minh số tiền nhận được (bao gồm cả vốn lẫn lãi) sau n (năm) gửi là  (đồng), nếu trong khoảng thời gian này người gửi không rút tiền ra và lãi suất không thay đổi....

Đánh giá

0

0 đánh giá