Chuyên đề Một số phương pháp giải toán lớp 4 gồm lý thuyết và 5 dạng bài tập từ cơ bản đến nâng cao có lời giải chi tiết giúp bạn đọc có thêm tài liệu ôn tập Toán lớp 4. Mời các bạn đón xem:
Chỉ từ 500k mua trọn bộ 24 Chuyên đề Toán lớp 4 (sách mới) bản word có lời giải chi tiết (chỉ từ 50k cho 1 bài Chuyên đề lẻ bất kì):
B1: Gửi phí vào tài khoản 0711000255837 - NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR)
B2: Nhắn tin tới zalo Vietjack Official
Xem thử tài liệu tại đây: Link tài liệu
Chuyên đề Một số phương pháp giải toán lớp 4
A – LÝ THUYẾT
I - Dạng toán dùng phương pháp giả thiết tạm
1. Khái niệm:
Phương pháp giả thiết tạm là phương pháp áp dụng để giải các bài toán mà phần cần tìm gồm ít nhất hai số chưa biết, còn phần đã cho gồm một điều kiện ràng buộc các số chưa biết đó với nhau. Ý tưởng của phương pháp này là nhờ một giả thiết tự đặt ra một cách thích hợp (giả thiết tạm) ta khử bớt các yếu tố tham gia vào các điều kiện đã cho, trên cơ sở đó tìm ra một số chưa biết, rồi lần lượt tìm các số còn lại
2. Ví dụ: Bài toán:
“Thuyền to chở được sáu người,
Thuyền nhỏ chở được bốn người là đông,
Một đoàn trai gái sang sông,
Mười thuyền to nhỏ giữa dòng đang trôi,
Toàn đoàn có cả trăm người,
Trên bờ còn bốn tám người đợi sang”.
Hỏi trên sông có bao nhiêu thuyền to, nhỏ mỗi loại?
Bài giải
Cách 1:
Số người ở trên thuyền là: 100 – 48 = 52 (người)
Giả sử tất cả các thuyền là thuyền to.
Khi ấy số người trên thuyền là: 10 × 6 = 60 (người)
Số người dư ra là: 60 – 52 = 8 (người)
Số người ở trên thuyền nhỏ ít hơn số người ở trên thuyền to là: 6 – 4 = 2 (người)
Số thuyền nhỏ là: 8 : 2 = 4 (thuyền)
Số thuyền to là:10 – 4 = 6 (thuyền)
Đáp số: Thuyền to : 6 thuyền; Thuyền nhỏ: 4 thuyền
Cách 2:
Số người ở trên thuyền là: 100 – 48 = 52 (người)
Giả sử tất cả các thuyền là thuyền nhỏ.
Khi ấy số người trên thuyền là: 10 × 4 = 40 (người)
Số người dư ra là: 52 – 40 = 12 (người)
Số người ở trên thuyền to hơn số người ở trên thuyền nhỏ là: 6 – 4 = 2 (người)
Số thuyền to là: 12 : 2 = 6 (thuyền)
Số thuyền nhỏ là:10 – 6 = 4 (thuyền)
Đáp số: Thuyền to : 6 thuyền; Thuyền nhỏ: 4 thuyền
Cách 3:
Số người ở trên thuyền là: 100 – 48 = 52 (người)
Giả sử mỗi thuyền to chỉ chở lại một nửa số người quy định.
Khi đó số người còn lại ở 10 thuyền là: 52 : 2 = 26 (người)
Khi ấy thuyền to chỉ chở được 3 người, thuyền nhỏ chỉ chở được 2 người.
Giả sử mỗi thuyền lại bớt đi 2 người khi ấy thuyền nhỏ không còn người nào, thuyền to chỉ chở được 1 người, số người còn lại là:
36 – (10 × 2) = 6 (người)
Vì mỗi thuyền to còn một người nên số thuyền to là 6 (thuyền)
Số thuyền nhỏ là: 10 – 6 = 4 (thuyền)
Đáp số: Thuyền to : 6 thuyền, Thuyền nhỏ: 4 thuyền
Cách 4:
Số người trên thuyền là: 100 – 48 = 52 (người)
Giả sử mỗi thuyền cùng bớt 2 người thì 10 thuyền còn số người là:
52 – (10 × 2) = 32 (người). Khi ấy thuyền nhỏ còn 2 người, thuyền to còn 4 người.
Giả sử mỗi thuyền lại bớt tiếp 2 người nữa. Khi ấy thuyền nhỏ không có người, thuyền to còn hai người. Số người của 10 thuyền là
32 – 20 = 12 (người).
12 người đó là của thuyền to, mỗi thuyền to có 2 người nên số thuyền to là:
12 : 2 = 6 (thuyền)
Sổ thuyền nhỏ là: 10 – 6 = 4 (thuyền)
Đáp số: Thuyền to : 6 thuyền, Thuyền nhỏ: 4 thuyền
Cách 5:
Số người trên thuyền là: 100 – 48 = 52 (người)
Giá sử cứ 2 thuyền to thay bằng 3 thuyền nhỏ. Khi đó mỗi lần thay số thuyền tăng là: 3 – 2 = 1 (thuyền)
Số thuyền lúc ấy là: 52 : 4 = 13 (thuyền)
Sổ thuyền tăng là: 13 – 10 = 3 (thuyền)
Khi đó số lần thay là 3 lần.
Vậy số thuyền to là: 2 × 3 = 6 (thuyền)
Số thuyền nhỏ là: 10 – 6 = 4 (thuyền)
Đáp số: 6 thuyền to, 4 thuyền nhỏ
Cách 6:
Số người trên thuyền là: 100 – 48 = 52 (người)
Giả sử số thuyền to bằng số thuyền nhỏ. Khi đó số thuyền to là 5 thuyền, số thuyền nhỏ là 5 thuyền.
Số người trên thuyền là: 4 × 5 + 6 × 5 = 50 (người)
Số người thiếu là: 52 – 50 = 2 (người)
Để số thuyền to và số thuyền nhỏ không đổi, ta thực hiện thay cứ một thuyền nhỏ bằng một thuyền to thì số thuyền to tăng lên là một thuyền và số thuyền nhỏ giảm đi một thuyền.
Mỗi lần thay số người tăng lên là: 6 – 4 = 2 (người)
Ta cần thực hiện số lần thay là: 2 : 2 = 1 (lần)
Vậy số thuyền to là: 5 + 1 = 6 (thuyền)
Số thuyền nhỏ là: 10 – 6 = 4 (thuyền)
Đáp số: 6 thuyền to; 4 thuyền nhỏ
II - Phương pháp suy luận logic.
- Xét trường hợp xấu nhất (tốt nhất) có thể xảy ra
Ví dụ: Trong hộp có 102 viên bi đỏ, 120 viên bi vàng và 150 viên bi xanh. Theo em không nhìn vào hộp, phải lấy ra ít nhất bao nhiêu viên bi để chắc chắn số bi lấy ra có đủ 3 màu và mỗi màu phải có nhiều hơn 2 viên?
BÀI GIẢI
Số viên bi phải lấy ra ít nhất để số bi lấy là có đủ 3 màu và mỗi màu nhiều hơn 2 viên là: 150 + 120 + 3 = 273 (viên)
Đáp số: 273 viên
III - Phương pháp giải toán bằng biểu đồ ven.
Trong khi giải bài toán, người ta thường dùng những đường cong kín để mô tả mối quan hệ giữa các đại lượng trong bài toán. Nhờ sự mô tả này mà ta giải được bài toán 1 cách thuận lợi. Những đường cong như thế gọi là biểu đồ VEN.
Ví dụ 1: Lớp học có 53 học sinh, qua điều tra thấy 40 em thích học môn văn, 30 em thích học môn toán. Hỏi có nhiều nhất bao nhiêu học sinh thích học 2 môn ? có ít nhất bao nhiêu học sinh thích học 2 môn ? nếu có 3 học sinh không thích học 2 môn thì lúc này có bao nhiêu học sinh thích học 2 môn.
Hướng dẫn
Số học sinh chỉ thích môn Văn là: 53 – 30 = 23 (em)
Số học sinh chỉ thích môn Toán là: 53 – 40 = 13 (em)
Số học sinh thích cả 2 môn Toán và Văn là: 53 – (23 + 13) = 17 (em)
Ví dụ 2:
Lớp 4A có 30 em tham gia dạ hội tiếng Anh và tiếng Trung, trong đó có 25 em nói được tiếng Anh và 18 em nói được tiếng Trung. Hỏi có bao nhiêu bạn nói được cả 2 thứ tiếng?
Hướng dẫn
Các em lớp 4A tham gia dạ hội được mô tả bằng sơ đồ ven.
Số học sinh chỉ nói được tiếng Trung là: 30 – 25 = 5 (em)
Số học sinh chỉ nói được tiếng Anh là: 30 – 18 = 12 (em)
Số em nói được cả 2 thứ tiếng là: 30 – (5 + 12) = 13 (em)
Đáp số: 13 em.
B - BÀI TẬP
Bài 1. 2 người thợ làm chung một công việc thì phải làm trong 7 giờ mới xong. Nhưng người thợ cả chỉ làm 4 giờ rồi nghỉ do đó người thứ hai phải làm 9 giờ nữa mới xong. Hỏi nếu làm riêng thì mỗi người phải làm mấy giờ mới xong?
Bài 2. Có một số dầu hỏa, nếu đổ vào các can 6 lít thì vừa hết. Nếu đổ vào các can 10 lít thì thừa 2 lít và số can giảm đi 5can. Hỏi có bao nhiêu lít dầu?
..........................................
..........................................
..........................................
Để mua trọn bộ Chuyên đề Toán lớp 4 (sách mới) năm 2024 mới nhất, mời Thầy/Cô liên hệ Mua tài liệu hay, chọn lọc
Xem thêm các bài Chuyên đề Toán lớp 4 hay, chi tiết khác:
Chuyên đề 1: Đọc, viết, so sánh số
Chuyên đề 2: Tính giá trị biểu thức - Tính nhanh
Chuyên đề 5: Các bài toán về kỹ thuật tính và quan hệ giữa các thành phần của phép tính
Chuyên đề 6: Các bài toán liên quan đến trung bình cộng
Chuyên đề 7: Các bài toán liên quan đến rút về đơn vị
Chuyên đề 8: Tìm hai số khi biết tổng và hiệu
Chuyên đề 9: Dãy số tự nhiên, dãy số theo quy luật
Chuyên đề 10: Dạng toán tính ngược từ cuối
Chuyên đề 11: Dạng tăng, giảm, ít hơn, nhiều hơn
Chuyên đề 12: Phép chia - Số dư
Chuyên đề 13: Các bài toán về đại lượng và đo đại lượng
Chuyên đề 14: Giải bài toán bằng cách vận dụng dấu hiệu chia hết
Chuyên đề 15: Tìm hai số khi biết tổng – tỉ, hiệu – tỉ của hai số
Chuyên đề 16: Tìm hai số khi biết hiệu hai số phương pháp khử
Chuyên đề 17: Dạng toán liên quan đến chữ số tận cùng
Chuyên đề 18: Các bài toán liên quan đến phân số
Chuyên đề 20: Dạng toán trồng cây
Chuyên đề 21: Dạng toán làm chung công việc
Chuyên đề 22: Dạng toán tính số ngày trong tháng