Giải SBT Toán 11 trang 62 Tập 2 Chân trời sáng tạo

206

Với lời giải SBT Toán 11 trang 62 Tập 2 chi tiết trong Bài 3: Hai mặt phẳng vuông góc sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Hai mặt phẳng vuông góc

Bài 5 trang 62 SBT Toán 11 Tập 2Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a3 . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Gọi (a) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD).

a) Tìm các giao tuyến của mặt phẳng (a) với các mặt của hình chóp.

b) Các giao tuyến ở câu a tạo thành hình gì? Tính diện tích của hình đó.

Lời giải:

Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a SA = a căn bậc hai 3

a) Ta có:

(SAB) ⊥ (ABCD);

(SAD) ⊥ (ABCD);

Do đó SA ⊥ (ABCD).

(SAB)  (SAD) = SA.

Dễ dàng chứng minh được (SAD) ⊥ (SCD).

Vẽ AM ⊥ SD (M  SD)  AM ⊥ (SCD)

Do đó (ABM) ⊥ (SCD) hay (ABM) là mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD).

Trong mặt phẳng (SCD) kẻ MN // CD (N SC).

Suy ra: MN // AB MN  (α).

Vậy các giao tuyến của (α) với các mặt của hình chóp là AB, BN, NM, MA.

b)

Ta có: MN // AB;AB ⊥ AM (vì AB ⊥ (SAD)).

Suy ra ABNM là hình thang vuông tại A và M.

Tam giác SAD vuông tại A có AM là đường cao nên:

1AM2=1SA2+1AD2=13a2+1a2=43a2AM=a32.

Vì MN // CD nên MNCD=SMSD

MNCD=SA2SD1SD=SA2SD2=SA2SA2+AD2=3a24a2

MN=34CD=34a

SABMN=12.AM.(MN+AB)=12.a32.34a+a=7a2316.

Bài 6 trang 62 SBT Toán 11 Tập 2Người ta cần sơn tất cả các mặt của một khối bê tông hình chóp cụt tứ giác đều, đáy lớn có cạnh bằng 2 m, đáy nhỏ có cạnh bằng 1 m và cạnh bên bằng 2 m (Hình 14). Tính tổng diện tích các bề mặt cần sơn.

Người ta cần sơn tất cả các mặt của một khối bê tông hình chóp cụt tứ giác đều

Lời giải:

Người ta cần sơn tất cả các mặt của một khối bê tông hình chóp cụt tứ giác đều

Diện tích đáy lớn: S1 = 2.2 = 4 m2.

Diện tích đáy nhỏ: S2 = 1.1 = 1m2.

Giả sử các mặt bên có dạng như hình vẽ:

Dễ thấy: AH = 0.5 m  DH=AD2AH2=152 .

Diện tích các mặt bên: S3 = 12.(AB+CD).DH=3154 .

Tổng diện tích các mặt cần sơn là:

S = S1 + S+ 4.S3 = 4 + 1 + 4. 3154 16,62 (m2).

Vậy tổng diện tích các bề mặt cần sơn khoảng 16,62 m2.

Bài 7 trang 62 SBT Toán 11 Tập 2Một hộp đèn treo trần có hình dạng lăng trụ đứng lục giác đều (Hình 15), cạnh đáy bằng 10 cm và cạnh bên bằng 50 cm. Tính tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn.

Một hộp đèn treo trần có hình dạng lăng trụ đứng lục giác đều Hình 15

Lời giải:

Diện tích xung quanh: Sxq = 6.10.50 = 3000 (cm2).

Diện tích đáy: Sđáy = 6.(102) . 34= 1503 (cm2).

Tỉ số diện tích: SxqSđáy=30001503=2033 .

Vậy tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn là 2033.

Đánh giá

0

0 đánh giá