Giải SBT Toán 11 trang 51 Tập 2 Chân trời sáng tạo

333

Với lời giải SBT Toán 11 trang 51 Tập 2 chi tiết trong Bài 1: Hai đường thẳng vuông góc sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Hai đường thẳng vuông góc

Bài 2 trang 51 SBT Toán 11 Tập 2Cho hình chóp S.ABCD. có đáy là hình thoi cạnh a, SA = a3, SA  AC, SA  BC, BAD^= 120°. Gọi M, N lần lượt là trung điểm của AD, BC. Tính góc giữa các cặp đường thẳng:

a) SD và BC.

b) MN và SC.

Lời giải:

Cho hình chóp S ABCD có đáy là hình thoi cạnh a SA =a căn bậc hai 3 SA ⊥ AC

a) Ta có: Cho hình chóp S ABCD có đáy là hình thoi cạnh a SA =a căn bậc hai 3 SA ⊥ AC

 SA ⊥ (ABCD)  SA ⊥ AD.

Do BC // AD nên (BC, SD) = (AD, SD).

tanADS^=SAAD=a3a=3

Do đó BC,SD=ADS^ = 60°.

b) Do MN // CD nên (SD, MN) = (SD, CD) = SCD^ .

Áp dụng định lí Pythagore, ta có:

Cho hình chóp S ABCD có đáy là hình thoi cạnh a SA =a căn bậc hai 3 SA ⊥ AC

Áp dụng định lí hàm cos trong ∆SCD, ta có:

cosSCD^=SC2+CD2SD22.SC.CD=(2a)2+a2(2a)22.2.a.a=14.

Do đó (SD, MN) = ≈ 75,52°.

Bài 3 trang 51 SBT Toán 11 Tập 2Cho tứ diện ABCD có AB = CD, AC = BD, AD = BC.

a) Chứng minh đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.

b) Chứng minh hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.

Lời giải:

Cho tứ diện ABCD có AB = CD AC = BD AD = BC

a) Gọi E, F lần lượt là trung điểm của các cạnh AD, BC.

Xét ∆BAD và ∆CDA, ta có:

Cho tứ diện ABCD có AB = CD AC = BD AD = BC

Do đó ∆BAD = ∆CDA (c.c.c)

Ta có BE = CE (2 đường trung tuyến ứng với cạnh AD).

Suy ra ∆BEC cân tại E nên EF ⊥ BC.

Chứng minh tương tự, ta có: EF ⊥ AD.

Vậy đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với hai cạnh đó.

b)Gọi G, H lần lượt là các trung điểm của 2 cạnh AB và CD.

Theo tính chất đường trung bình, ta có:

Cho tứ diện ABCD có AB = CD AC = BD AD = BC EH = GF = EG = HF

Khi đó, EHFG là hình thoi, suy ra EF ⊥ GH.

Vậy hai đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc với nhau.

Bài 4 trang 51 SBT Toán 11 Tập 2Cho hình chóp tứ giác S.ABCD có tất cả các cạnh đều bằng a. Gọi M, N, I, J lần lượt là trung điểm của SA, SD, SC và BC. Tính góc giữa các cặp đường thẳng sau:

a) IJ và DC;

b) MN và IJ.

Lời giải:

Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Gọi M N I J lần lượt là

a) Ta có: Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Gọi M N I J lần lượt là

(IJ,CD)=(SB,AB)=SBA^.

Từ giả thiết, ta có ∆SAB là tam giác đều.

(IJ,CD)=SBA^=60°.

b)Ta có: Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Gọi M N I J lần lượt là

(IJ,MN)=(SB,BC)=SBC^.

Từ giả thiết, ta có ∆SBC là tam giác đều.

Do đó (IJ,  MN)=SBC^=60° .

Bài 5 trang 51 SBT Toán 11 Tập 2Cho tứ diện đều ABCD cạnh a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Chứng minh hai đường thẳng OA và CD vuông góc với nhau.

Lời giải:

Cho tứ diện đều ABCD cạnh a Gọi O là tâm đường tròn ngoại tiếp tam giác BCD

Giả sử điểm H là chân đường vuông góc hạ từ đỉnh A xuống mặt phẳng đáy.

Xét ∆AHB, ∆AHC và ∆AHD:

Cho tứ diện đều ABCD cạnh a Gọi O là tâm đường tròn ngoại tiếp tam giác BCD

 ∆AHB, ∆AHC và ∆AHD là các tam giác bằng nhau (cạnh huyền – cạnh góc vuông).

 BH = CH = DH  H là tâm đường tròn ngoại tiếp tam giác BCD.

 H  O AO là đường cao của tứ diện ABCD.

 OA ⊥ CD.

Vậy hai đường thẳng OA và CD vuông góc với nhau.

Đánh giá

0

0 đánh giá