Với lời giải SBT Toán 11 trang 31 Tập 2 chi tiết trong Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
Lời giải:
Gọi O là giao điểm của A'C' và B'D'.
Khi đó, O là trung điểm của A'C' và B'D'.
Theo đề bài ta có O là hình chiếu của A trên mặt phẳng (A'B'C'D').
Do đó, A'O là hình chiếu vuông góc của AA' trên mặt phẳng (A'B'C'D'). Khi đó góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng góc giữa AA' và A'O. Mà (AA',A'O) = .
Vì hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a nên A'B'C'D' là hình vuông cạnh a. Do đó A'C'2 = A'B'2 + B'C'2 = a2 + a2 = 2a2 ⇒ A'C' = a.
A'O = .
Xét tam giác AOA' vuông tại O, có cos = = 60o.
Vậy góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng 60°.
a) Chứng minh rằng SO (ABCD).
b) Tính góc giữa đường thẳng SA và mặt phẳng (SBD).
c) Gọi M là trung điểm của cạnh SC và là góc giữa đường thẳng OM và mặt phẳng (SBC). Tính sin.
Lời giải:
a) Có O là trung điểm của AC, BD.
Vì SA = SC nên tam giác SAC là tam giác cân mà SO là trung tuyến nên SO là đường cao hay SO AC.
Tương tự SO BD. Do đó SO (ABCD).
b) Vì SO (ABCD) nên SO AO.
Lại có AO BD (do ABCD là hình vuông). Do đó AO (SBD).
Suy ra SO là hình chiếu vuông góc của SA trên mặt phẳng (SBD). Do đó góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc giữa hai đường thẳng SA và SO.
Mà (SA,SO) = .
Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Có SA2 + SC2 = a2 + a2 = 2a2, suy ra AC2 = SA2 + SC2. Do đó tam giác ASC vuông tại S mà SA = SC nên tam giác ASC vuông cân tại S.
Xét tam giác vuông cân ASC tại S có SO là đường cao nên SO là phân giác. Do đó = 45o .
Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 45°.
c) Kẻ OK BC tại K, OH SK tại H.
Có BC OK (cách vẽ), BC SO (SO (ABCD)). Do đó BC (SOK), suy ra BC OH mà OH SK nên OH (SBC).
Suy ra, HM là hình chiếu vuông góc của OM trên mặt phẳng (SBC), do đó góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc giữa hai đường thẳng OM và MH, mà (OM,MH) = .
Do tam giác SOC vuông tại O, OM là trung tuyến nên OM = .
Xét tam giác ABC có OK là đường trung bình nên OK = .
Xét tam giác SAC vuông tại S, có .
Xét tam giác SOK vuông tại O, có .
Xét tam giác OHM vuông tại H, có sin = sin.
Vậy sin = .
Lời giải:
Gọi A là vị trí con diều, B là vị trí đầu dây diều trên mặt đất, H là hình chiếu vuông góc của A trên mặt đất.
Xét tam giác ABH vuông tại H, = 60o, AB = 10 m = 1 000 cm.
Ta có AH = AB . sin60° 866 (cm).
Vậy hình chiếu vuông góc trên mặt đất của con diều cách đầu dây diều trên mặt đất khoảng 866 centimét.
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác: