Bài 11 trang 98 Toán 11 Tập 2 Chân trời sáng tạo | Giải bài tập Toán lớp 11

328

Với giải Bài 11 trang 98 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài tập cuối chương 9

Bài 11 trang 98 Toán 11 Tập 2: Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh. Tính xác suất của biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông".

Lời giải:

Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh có C243=2024 cách chọn.

Gọi biến cố A “3 đỉnh được chọn là 3 đỉnh của một tam giác cân” và biến cố B “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”.

Biến cố AB “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân”.

Biến cố A ∪ B “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.

Số tam giác đều được tạo thành từ các đỉnh của một đa giác đều 24 đỉnh là 8 tam giác.

Nhận thấy đường chéo qua tâm đi qua đỉnh tam giác cân sẽ đi qua đỉnh đối diện và đường chéo này là trục đối xứng của tam giác cân nên hai đỉnh còn lại sẽ đối xứng qua trục.

Đường chéo này chia đường tròn thành 2 nửa đường tròn, trên mỗi nửa đường tròn có 11 điểm nên sẽ có 11 cặp điểm đối xứng qua đường chéo, do đó sẽ có 11 tam giác cân tại đỉnh đã chọn (trong đó có 1 tam giác đều).

Vậy số tam giác cân không đều là 24 × 10 = 240 ( tam giác ) .

Số kết quả thuận lợi cho biến cố A là 240 + 8 = 248.

Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân là P(A)=2482024=31253.

Gọi (O) là đường tròn ngoại tiếp đa giác đều đó.

Mỗi tam giác vuông có 3 đỉnh là 3 đỉnh của đa giác thì cạnh huyền của tam giác vuông phải là đường kính của (O), do đó có 12 cách chọn đường kính.

Với mỗi cách chọn đường kính có 22 cách chọn đỉnh góc vuông (22 đỉnh còn lại của đa giác).

Vậy số tam giác vuông thỏa mãn là 12 × 22 = 264 ( tam giác ) .

Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là P(B)=2642024=323.

Ứng với mỗi đường kính ta có 2 cách chọn đỉnh sao cho 3 đỉnh tạo thành tam giác vuông cân. Do đó có 12 × 2 = 24 ( tam giác vuông cân ) .

Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân là P(AB)=242024=3253

Do đó xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là: PAB=31253+3233253=61253.

Vậy xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là 61253.

Đánh giá

0

0 đánh giá