Cho tứ diện ABCD có DA ⊥ (ABC), ABC là tam giác cân tại A. Gọi M là trung điểm của BC

2.7 K

Với giải Bài 3 trang 55 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3 trang 55 SBT Toán 11 Tập 2Cho tứ diện ABCD có DA ⊥ (ABC), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ AH ⊥ MD tại H.

a) Chứng minh rằng AH ⊥ (BCD).

b) Gọi G, K lần lượt là trọng tâm của tam giác ABC và DBC. Chứng minh rằng GK ⊥ (ABC).

Lời giải:

Cho tứ diện ABCD có DA ⊥ (ABC) ABC là tam giác cân tại A Gọi M là trung điểm của BC

a)Tam giác ABC cân tại A  Trung tuyến AM ⊥ BC.

Lại có DA ⊥ (ABC)  DA ⊥ BC.

 BC ⊥ (ADM)  BC ⊥ AH. (1)

Theo giả thiết: AH ⊥ DM. (2)

Từ (1) và (2) suy ra AH ⊥ (BCD).

b)Ta có: MKMD=MGMA=13 nên GK // AD (theo định lí Thalès).

Ta lại có AD ⊥ (ABC) suy ra GK ⊥ (ABC).

Đánh giá

0

0 đánh giá