Gieo hai con xúc xắc cân đối. Xét các biến cố A: “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm

3.4 K

Với giải Bài 8.12 trang 51 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 30: Công thức nhân xác suất cho hai biến cố độc lập giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài 8.12 trang 51 SBT Toán 11 Tập 2: Gieo hai con xúc xắc cân đối. Xét các biến cố A: “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”, B: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”. Chứng tỏ rằng A và B không độc lập.

Lời giải:

Vì gieo hai con xúc xắc cân đối nên ta có n(Ω) = 36.

Xét biến cố đối A¯ : “Cả hai con xúc xắc không xuất hiện mặt 5 chấm”.

A¯ = {(a,b):a,b{1;2;3;4;6}}. Ta có n(A¯) = 25.

Do đó P(A¯) = 2536P(A) = 1-P(A¯) = 1-2536 = 1136.

Ta có B = {(1, 6); (2, 5); (3, 4); (4, 3); (5, 2); (6, 1)}, n(B) = 6.

Do đó P(B) = 636 .

AB = A B = {(2, 5); (5, 2)}, n(AB) = 2. Do đó P(AB) = 236 .

Vì P(AB) = 236 = 72362P(A).P(B) = 66362 nên A và B không độc lập.

Vậy A và B không độc lập.

Đánh giá

0

0 đánh giá