Cho hình lăng trụ đứng ABC.A'B'C' có góc BAC = 60 độ , AB = 2a, AC = 3a

2.2 K

Với giải Bài 7.54 trang 43 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 7 trang 41giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 7 trang 41

Bài 7.54 trang 43 SBT Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A'B'C' có BAC^=60° , AB = 2a, AC = 3a và số đo của góc nhị diện [A', BC, A] bằng 45°.

a) Tính theo a khoảng cách từ điểm A đến mặt phẳng (A'BC).

b) Tính theo a thể tích khối lăng trụ ABC.A'B'C'.

Lời giải:

Cho hình lăng trụ đứng ABC.A'B'C' có góc BAC = 60 độ

a) Kẻ AH BC tại H.

Vì ABC.A'B'C' là lăng trụ đứng nên A'A (ABC), suy ra A'A BC mà AH BC nên BC (A'AH).

Kẻ AK A'H tại K, lại có BC AK (do BC (A'AH)) nên AK (A'CB).

Do đó d(A, (A'BC)) = AK.

Có BC (A'AH) nên BC A'H mà AH BC nên góc nhị diện [A', BC, A] bằng AHA'^ , suy ra AHA'^=45° .

Áp dụng định lí côsin trong tam giác ABC, có

BC2=AB2+AC2- 2.AB.AC.cosBAC^ = 4a2+9a2-2.2a.3a.cos60o = 7a2.

BC = a7.

SABC=AHBC2AH=SABC2BC =ABACsinBAC^BC

=2a.3a.sin60oa7 = 3217a.

Xét tam giác AHK vuông tại K, có AK = AH . sin45° = 321a722=342a14 .

Vậy d(A, (A'BC)) = 342a14 .

b) Vì tam giác A'AH vuông tại A, AHA'^=45° nên tam giác A'AH vuông cân tại A nên AA' = AH = 3217a.

Ta có: VABC.A'B'C'=SABCAA' = 12.AB.AC.sinBAC^.AA'

= 12.2a.3a.sin60o.321a7= 277a314.

Đánh giá

0

0 đánh giá