Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD) bằng

559

Với giải Bài 7.45 trang 42 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 7 trang 41giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 7 trang 41

Bài 7.45 trang 42 SBT Toán 11 Tập 2: Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD) bằng

A. 23 .

B. 32 .

C. 33 .

D. 13 .

Lời giải:

Đáp án đúng là: D

Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD)

Gọi M là trung điểm của CD.

Do tam giác ACD và BCD là tam giác đều nên AM CD và BM CD.

Khi đó góc giữa hai mặt phẳng (ACD) và (BCD) bằng góc giữa hai đường thẳng AM và BM, mà (AM,BM) = AMB^.

Vì tam giác ACD và BCD là tam giác đều cạnh bằng a nên AM = BM = a32 .

Áp dụng định lí côsin cho tam giác ABM có:

cosAMB^=AM2+BM2AB22AMBM=3a24+3a24a22a32a32=a223a22=13.

Vậy côsin góc giữa hai mặt phẳng (ACD) và (BCD) bằng 13 .

Đánh giá

0

0 đánh giá