Cho hình chóp S.ABCD có SA vuông góc (ABCD), biết ABCD là hình vuông cạnh bằng a

417

Với giải Bài 7.52 trang 43 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 7 trang 41giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 7 trang 41

Bài 7.52 trang 43 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có SA (ABCD), biết ABCD là hình vuông cạnh bằng a và SA = a2 .

a) Chứng minh rằng (SAC) (SBD) và (SAD) (SCD).

b) Gọi BE, DF là hai đường cao của tam giác SBD. Chứng minh rằng (ACF) (SBC) và (AEF) (SAC).

c) Tính theo a khoảng cách giữa hai đường thẳng BD và SC.

Lời giải:

Cho hình chóp S.ABCD có SA vuông góc (ABCD), biết ABCD là hình vuông

a) Ta có ABCD là hình vuông nên AC BD. Mà SA (ABCD) nên SA BD.

Do đó BD (SAC) mà BD (SBD) nên (SAC) (SBD).

Vì ABCD là hình vuông nên AD CD mà SA (ABCD) nên CD SA.

Do đó CD (SAD) mà CD (SCD) nên (SAD) (SCD).

b) Vì ABCD là hình vuông nên AD AB mà SA (ABCD) nên AD SA.

Do đó AD (SAB), suy ra AD SB.

Vì DF là đường cao của tam giác SBD nên SB DF mà AD SB do đó SB (ADF), suy ra SB AF.

Vì ABCD là hình vuông nên AB BC, mà SA (ABCD) nên SA BC.

Do đó BC (SAB) nên BC AF.

Có SB AF và BC AF, do đó AF (SBC) mà AF (ACF) nên (ACF) (SBC).

Vì AF (SBC) nên AF SC.

Vì CD (SAD), suy ra CD AE.

Vì ABCD là hình vuông nên AD AB mà SA (ABCD) nên AB SA.

Vì AD AB và AB SA nên AB (SAD), suy ra AB SD.

Lại có BE là đường cao của tam giác SBD nên BE SD.

Vì AB SD và BE SD nên SD (ABE), suy ra SD AE.

Vì SD AE mà CD AE nên AE (SCD), suy ra AE SC mà AF SC.

Do đó SC (AEF) mà SC (SAC) nên (AEF) (SAC).

c) Gọi O là giao điểm của AC và BD, kẻ OH SC tại H.

Có AC BD và BD SA nên BD (SAC), suy ra OH BD.

Do đó OH là đoạn vuông góc chung của BD và SC hay d(BD, SC) = OH.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2 .

Do ABCD là hình vuông nên O là trung điểm của AC nên OC = AC2=a22 .

Xét tam giác SAC vuông tại A nên SC = SA2+AC2=2a2+2a2=2a

Xét CHO và CAS có góc C chung và CHO^=CAS^=90° nên CHO đồng dạng với CAS, suy ra OCCS=OHASOH=OCASCS=a22a22a=a2.

Vậy d(BD, SC) = a2 .

Đánh giá

0

0 đánh giá