Giải Toán 8 trang 35 Tập 2 Kết nối tri thức

358

Với lời giải Toán 8 trang 35 Tập 2 chi tiết trong Bài 26: Giải bài toán bằng cách lập phương trình sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 26: Giải bài toán bằng cách lập phương trình

Luyện tập trang 35 Toán 8 Tập 2: Bác Mai đi siêu thị mua một mặt hàng đang có chương trình khuyến mãi giảm giá 20%. Vì có thẻ khách hàng thân thiết của siêu thị nên bác được giảm thêm 5% trên giá đã giảm, do đó bác Mai chỉ phải trả 380 nghìn đồng cho mặt hàng đó. Hỏi giá ban đầu của mặt hàng đó nếu không khuyến mại là bao nhiêu?

Lời giải:

Gọi giá ban đầu của mặt hàng đó nếu không khuyến mại là x (nghìn đồng) (x > 0).

Giá sản phẩm khi được giảm 20% là: x – 20%x = 45x

Vì giá sản phẩm sau khi đã giảm thêm 5% trên giá đã giảm là 380 nghìn đồng, ta có phương trình:

45x45x.5%=380

45x125x=380

1925x=380

x = 500

Vậy giá sản phẩm ban đầu là 500 nghìn đồng.

Tranh luận trang 35 Toán 8 Tập 2: Xét bài toán sau:

“Một xe máy khởi hành từ Hà Nội đi Hải Phòng với vận tốc 40 km/h. Sau đó 20 phút, trên cùng tuyến đường đó, một ô tô xuất phát từ Hải Phòng đi Hà Nội với vận tốc 60 km/h. Biết quãng đường từ Hà Nội đến Hải Phòng dài khoảng 120 km. Hỏi sau bao lâu, kể từ khi xe máy khởi hành thì hai xe gặp nhau?”

Để giải bài toán này, hai bạn Vuông và Tròn chọn ẩn như sau:

Tròn: Mình chọn ẩn x (giờ) là thời gian từ  lúc xe máy khởi hành đến lúc hai xe gặp nhau.

Vuông: Mình chọn ẩn x (km) là quãng đường từ Hà Nội đến điểm gặp nhau của hai xe.

Pi: Hãy viết phương trình nhận được theo mỗi cách chọn ẩn này!

Theo em, trong hai cách chọn ẩn của Vuông và Tròn, cách nào sẽ cho lời giải ngắn gọn hơn?

Lời giải:

* Giải theo cách chọn ẩn của Tròn:

Gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là x (giờ) (x > 0).

Đổi 20 phút = 13(giờ)

Thời gian ô tô xuất phát từ Hải Phòng đi Hà Nội đến lúc hai xe gặp nhau là x13(giờ)

Vì xe máy đi với vận tốc 40 km/h, ô tô đi với vận tốc 60 km/h, quãng đường Hà Nội đến Hải Phòng là 120 km nên ta có phương trình:

40x + 60.x13 = 120

40x + 60x – 20 = 120

100x = 140

x=140100=75

Đổi 75giờ = 1 giờ 24 phút.

Vậy sau 1 giờ 24 phút, kể từ lúc xe máy khởi hành thì hai xe gặp nhau.

* Giải theo cách chọn ẩn của Vuông:

Gọi quãng đường từ Hà Nội đến điểm gặp nhau của hai xe là x (km).

Quãng đường từ Hải Phòng đến điểm hai xe gặp nhau là 120 – x (km).

Thời gian xe máy đi từ Hà Nội đến điểm hai xe gặp nhau là x40 (giờ).

Thời gian ô tô đi từ Hải Phòng đến điểm hai xe gặp nhau là 120x60(giờ).

Đổi 20 phút = 13(giờ)

Vì ô tô đi sau xe máy 20 phút nên ta có phương trình:

x40=120x60+13

3x120=2402x120+40120

3x = 240 – 2x + 40

3x + 2x = 280

5x = 280

x = 56

Thời gian xe máy đi từ Hà Nội đến điểm hai xe gặp nhau là 5640=75(giờ).

Đổi 75giờ = 1 giờ 24 phút.

Sau 1 giờ 24 phút , kể từ lúc xe máy khời hành thì hai xe gặp nhau.

Vậy giải theo cách chon ẩn của bạn Tròn thì cách giải sẽ ngắn gọn hơn.

Bài tập

Bài 7.7 trang 35 Toán 8 Tập 2: Chị Linh làm việc trong một ngân hàng và được thưởng Tết bằng 2,5 tháng lương. Tổng thu nhập một năm của chị Linh bao gồm 12 tháng lương và thưởng Tết là 290 triệu đồng. Hỏi lương hàng tháng của chị Linh là bao nhiêu?

Lời giải:

Gọi x (triệu đồng) là lương hàng tháng của chị Linh (0 < x < 290).

Khi đó, thưởng Tết của chị Linh là 2,5x (triệu đồng).

Lương 12 tháng của chị Linh là 12x (triệu đồng).

Theo đề bài ta có phương trình: 12x + 2,5x = 290

                                                14,5x = 290

                                                x = 20 (thỏa mãn).

Vậy lương hàng tháng của chị Linh là 20 triệu đồng.

Bài 7.8 trang 35 Toán 8 Tập 2: Bác Hưng đầu tư 300 triệu đồng vào hai khoản: mua trái phiếu doanh nghiệp với lãi suất 8% một năm và gửi tiết kiệm ngân hàng với lãi suất 6% một năm. Cuối năm bác Hưng nhận được 22 triệu đồng tiền lãi. Hỏi bác Hưng đã đầu tư vào mỗi khoản bao nhiêu tiền?

Lời giải:

Gọi số tiền bác Hưng dùng để mua trái phiếu doanh nghiệp là x (triệu đồng).

Điều kiện: 0 ≤ x ≤ 300.

Khi đó số tiền bác Hưng dùng để gửi tiết kiệm ngân hàng là 300 – x (triệu đồng).

Số tiền lãi bác Hưng thu được từ mua trái phiếu doanh nghiệp là 0,08x (triệu đồng) và số tiền lãi thu được từ gửi tiết kiệm ngân hàng là 0,06(300 – x) (triệu đồng).

Theo đề bài ta có phương trình: 0,08x + 0,06(300 – x) = 22

                                                0,08x + 18 – 0,06x = 22

                                                0,02x = 4

                                                x = 200 (thỏa mãn)

Vậy bác Hưng dùng 200 triệu để mua trái phiếu và dùng 100 triệu để gửi tiết kiệm ngân hàng.

Đánh giá

0

0 đánh giá