Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp

2 K

Với giải Bài 4.38 trang 68 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 13: Hai mặt phẳng song song

Bài 4.38 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q.

a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’.

b) Chứng minh rằng ABCD.MNPQ là hình hộp.

Lời giải:

Sách bài tập Toán 11 Bài 13 (Kết nối tri thức): Hai mặt phẳng song song (ảnh 10)

a) Áp dụng định lí Thalès cho ba mặt phẳng (ABCD), (MNPQ), (A’B’C’D’) và hai cát tuyến AA’, DB’ ta có: AMMA=DOOB

Vì O là trung điểm của DB’ nên M là trung điểm của AA’.

Chứng minh tương tự ta có: N, P, Q lần lượt là trung điểm của BB’, CC’, DD’.

b) Vì M, N lần lượt là trung điểm của AA’, BB’ nên MN//AB, MN=AB

Tương tự ta có: PQ//CD và PQ=CD

Vì AB=CD và AB//CD nên MN=PQ và MN//PQ.

Do đó tứ giác MNPQ là hình bình hành.

Vì các đường thẳng AM, BN, CP, DQ đôi một song song nên suy ra ABCD.MNPQ là hình hộp.

Đánh giá

0

0 đánh giá