Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường a, b, c, d đôi một song song

1 K

Với giải Bài 4.29 trang 67 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 13: Hai mặt phẳng song song

Bài 4.29 trang 67 SBT Toán 11 Tập 1: Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường a, b, c, d đôi một song song và không nằm trong mặt phẳng (ABCD).

a) Chứng minh rằng hai mặt phẳng mp(a,b) và mp(c,d) song song với nhau.

b) Chứng minh rằng hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau.

c) Một mặt phẳng cắt bốn đường thẳng a, b, c, d lần lượt tại A’, B’, C’, D’. Chứng minh rằng tứ giác A’B’C’D’ là hình bình hành.

Lời giải:

Sách bài tập Toán 11 Bài 13 (Kết nối tri thức): Hai mặt phẳng song song (ảnh 1)

a) Vì a//d nên a//mp(c, d).

Vì ABCD là hình bình hành nên AB//CD, do đó AB// mp(c, d).

Mặt phẳng (a, b) chứa hai đường thẳng a và AB cắt nhau tại A và cùng song song với mp(c, d).

Do đó, hai mặt phẳng mp(a,b) và mp(c,d) song song với nhau.

b) Vì a//b nên a//mp(b, c).

Vì ABCD là hình bình hành nên AD//BC, do đó AD// mp(b, c).

Mặt phẳng (a, d) chứa hai đường thẳng a và AD cắt nhau tại A và cùng song song với mp(b, c).

hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau.

c) Vì mặt phẳng (a, b) song song với mặt phẳng (c, d) nên giao tuyến của mặt phẳng (A’B’C’D’) với hai mặt phẳng đó song song với nhau, tức là A’B’//C’D’.

Vì hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau nên giao tuyến của mặt phẳng (A’B’C’D’) với hai mặt phẳng đó song song với nhau, tức là A’D’//C’B’.

Tứ giác A’B’C’D’ có: A’B’//C’D’, A’D’//C’B’ nên tứ giác A’B’C’D’ là hình bình hành.

Đánh giá

0

0 đánh giá