Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O

396

Với giải Bài 1 trang 65 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi

Bài 1 trang 65 SBT Toán 8 Tập 1: Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt AB và CD lần lượt tại M, N. Chứng minh rằng O là trung điểm của MN.

Lời giải:

Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O

Do ABCD là hình bình hành nên AB // CD, suy ra ODN^=OBM^(hai góc so le trong);

OB = OD (tính chất đường chéo của hình bình hành);

Xét ∆DON và ∆BOM ta có:

ODN^=OBM^;

OD = OB;

O1^=O2^ (hai góc đối đỉnh).

Suy ra ∆DON = ∆BOM (g.c.g).

Do đó OM = ON (hai cạnh tương ứng)

Vậy O là trung điểm của MN.

Đánh giá

0

0 đánh giá