Với giải Bài 43 trang 113 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 5: Hình lăng trụ và hình hộp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 5: Hình lăng trụ và hình hộp
Bài 43 trang 113 SBT Toán 11: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.
a) Chứng minh rằng IK // (BCC'B').
b) Chứng minh rằng (AGK) // (A'IC).
c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính .
Lời giải:
a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.
Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên .
Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').
b) Gọi P là trung điểm của cạnh BC.
Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC).
Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)
AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).
Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).
c) Với K là trọng tâm của tam giác A'BB', ta suy ra nên .
Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.
Áp dụng định lí Thalés trong không gian, ta có: .
Suy ra .
Vậy .
Xem thêm lời giải sách bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 36 trang 112 SBT Toán 11: Số đường chéo trong một hình hộp là:...
Bài 38 trang 112 SBT Toán 11: Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?...
Bài 41 trang 113 SBT Toán 11: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'...
Xem thêm các bài giải SBT Toán 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian