Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B

3.7 K

Với giải Bài 43 trang 113 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 5: Hình lăng trụ và hình hộp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Hình lăng trụ và hình hộp

Bài 43 trang 113 SBT Toán 11Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.

a) Chứng minh rằng IK // (BCC'B').

b) Chứng minh rằng (AGK) // (A'IC).

c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính LA'LC.

Lời giải:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.  a) Chứng minh rằng IK // (BCC'B').  b) Chứng minh rằng (AGK) // (A'IC).  c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính  . (ảnh 1)

a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.

Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên A'IA'M=A'KA'N=23.

Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').

b) Gọi P là trung điểm của cạnh BC.

Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC). 

Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)

AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).

Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).

c) Với K là trọng tâm của tam giác A'BB', ta suy ra B'KB'A=13 nên B'KKA=12.

Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.

Áp dụng định lí Thalés trong không gian, ta có: B'KA'L=KALC=AB'CA'.

Suy ra A'LLC=B'KKA=12.

Vậy LA'LC=12.

Đánh giá

0

0 đánh giá