Với giải Bài 4 trang 66 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Bài tập cuối chương 3 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải VTH Toán 8 Bài tập cuối chương 3
Bài 4 trang 66 vở thực hành Toán 8 Tập 1: Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).
Lời giải:
Xét tứ giác ABCD đó có hai đường chéo AC = BD, hai cạnh đối AD = BC.
Hai tam giác ABD và BCA có: cạnh chung AB, AC = BD, AD = BC.
Vậy ∆ABD = ∆BCA (c.c.c).
⇒ (1)
Tương tự, ta có ∆ACD = ∆BDC (c.c.c)
⇒ (2)
Gọi O là giao của hai đường chéo AC và BD thì (hai góc đối đỉnh). (3)
Từ (1), (2), (3), ta có ⇒ AB // CD ⇒ ABCD là hình thang.
Vậy hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.
Xem thêm lời giải bài tập Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Câu 1 trang 65 vở thực hành Toán 8 Tập 1: Chọn phương án đúng.
Câu 2 trang 65 vở thực hành Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
Câu 3 trang 65 vở thực hành Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
Bài 4 trang 66 vở thực hành Toán 8 Tập 1: Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).
Bài 5 trang 66 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy điểm P trên tia AB sao cho AP = 2AB.
Bài 6 trang 66 vở thực hành Toán 8 Tập 1: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45).
Bài 7 trang 67 vở thực hành Toán 8 Tập 1: Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E, K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống MEvà từ M xuống AB (H.3.46).
Bài 8 trang 68 vở thực hành Toán 8 Tập 1: Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E lần lượt là trung điểm của AB, AC. Lấy M là điểm trên DH sao cho MD = DH. Chứng minh rằng:
Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Luyện tập chung trang 63
Bài tập cuối chương 3
Bài 15: Định lí Thalès trong tam giác
Bài 16: Đường trung bình của tam giác
Bài 17: Tính chất đường phân giác của tam giác