Biết rằng hai đa thức (thu gọn) bằng nhau khi chúng có cùng số các hạng tử, và với mỗi hạng tử của đa thức này đều có một hạng tử của đa thức kia đồng dạng và có cùng hệ số với nó

440

Với giải Bài 5 trang 13 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Bài 3: Phép cộng và phép trừ đa thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải VTH Toán 8 Bài 3: Phép cộng và phép trừ đa thức

Bài 5 trang 13 vở thực hành Toán 8 Tập 1: Biết rằng hai đa thức (thu gọn) bằng nhau khi chúng có cùng số các hạng tử, và với mỗi hạng tử của đa thức này đều có một hạng tử của đa thức kia đồng dạng và có cùng hệ số với nó. Áp dụng điều đó để giải bài toán sau:

Cho hai đa thức P = ax2y2 – 3xy3 + bx3y – xy + 2x – 3 và Q = cxy3 – 4x2y2 – x3y + dxy + y + 1, trong đó a, b, c, d là các số thực. Tìm a, b, c và d, biết rằng:

P + Q = 4x3y – 7xy3 + 2x + y – 2.

Lời giải:

Ta có:

P + Q = (ax2y2 – 3xy3 + bx3y – xy + 2x – 3) + (cxy3 – 4x2y2 – x3y + dxy + y + 1)

= (a – 4)x2y2 + (b – 1)x3y + (c – 3)xy3 + (d – 1)xy + 2x + y – 2.

Vậy để xảy ra P + Q = 4x3y – 7xy3 + 2x + y – 2, ta phải có:

a – 4 = 0 (hệ số của x2y2), suy ra a = 4; c – 3 = −7 (hệ số của xy3), suy ra c = −4; b – 1 = 4 (hệ số của x3y), suy ra b = 5; d – 1 = 0 (hệ số của xy), suy ra d = 1.

Đáp số là: a = 4, b = 5, c = −4 và d = 1.

Đánh giá

0

0 đánh giá