Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó

0.9 K

Với giải Bài 3.13 trang 37 SBT Toán lớp 8 Kết nối tri thức chi tiết trong Bài 12: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán lớp 8 Bài 12: Hình bình hành

Bài 3.13 trang 37 sách bài tập Toán 8 Tập 1: Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó.

Lời giải:

Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó

Xét hình thang ABCD với hai đáy AB và CD. Giả sử AB < CD.

Kẻ đường thẳng đi qua B song song với AD, cắt CD tại E.

Xét tứ giác ABED có: AB // DE và AD // BE

Do đó ABED là hình bình hành nên AB = DE và AD = BE.

Do AB < CD nên E nằm giữa C và D, do đó EC = DC – DE hay EC = DC ‒ AB. (1)

Trong tam giác BEC có: BE + BC > EC (bất đẳng thức trong tam giác)

Mà AD = BE nên AD + BC > EC (2)

Từ (1), (2) suy ra AD + BC > DC – AB.

Đánh giá

0

0 đánh giá