Giải SBT Toán 10 trang 18 Tập 1 Kết nối tri thức

2.7 K

Với lời giải SBT Toán 10 trang 18 Tập 1 chi tiết trong Bài 3: Bất phương trình bậc nhất hai ẩn sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 2.1 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y ≤ 4 và miền nghiệm của bất phương trình -3x + y ≥ 4.

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.

Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.

Ta có bảng sau:

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).

• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.

Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.

Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).

Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).

Cho bất phương trình bậc nhất hai ẩn -3x + y < 4

Bài 2.2 trang 18 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.

Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ.

Lời giải:

Ta có 2x + 3y + 3 ≤ 5x + 2y + 3

 2x + 3y + 3 - 5x - 2y - 3 ≤ 0.

-3x + y ≤ 0.

Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:

Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.

Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3

Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).

• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.

Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.

Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).

Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3

Bài 2.3 trang 18 sách bài tập Toán lớp 10 Tập 1: Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).

Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d

Lời giải:

Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).

Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).

Thay x = 0; y = -2 vào đường thẳng d ta có:

-2 = a . 0 + b

 b = -2.

Thay x = 4; y = 0 vào đường thẳng d ta có:

0 = 4 . a + (-2)

 2 = 4 . a

 a = 24=12

Do đó phương trình đường thẳng d: y = 12x - 2

 2y = x - 4

 x - 2y = 4.

Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.

Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.

Xem thêm các bài giải sách bài tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Giải SBT Toán 10 trang 19 Tập 1

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 1

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Đánh giá

0

0 đánh giá