Các dạng bài tập về Tích phân có đáp án

Tải xuống 30 13.7 K 233

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ bài tập Tích phân Toán lớp 12, tài liệu bao gồm 30 trang, tuyển chọn 174 bài tập Tích phân đầy đủ lý thuyết, phương pháp giải chi tiết và đáp án, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi tốt nghiệp THPT môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Tài liệu Các dạng bài tập về Tích phân có đáp án gồm các nội dung sau:

A. Kiến thức cơ bản

- Tổng hợp kiến thức trọng tâm cần nhớ về Tích phân

B. Kỹ năng cơ bản

- Tổng hợp phương pháp giải của 4 dạng bài cơ bản

C. Bài tập 

- Gồm 174 câu hỏi trắc nghiệm Tích phân mức độ nhận biết, thông hiểu, vận dụng 

D. Đáp án câu hỏi trắc nghiệm

- Bảng đáp án của 174 câu hỏi trắc nghiệm giúp học sinh tham khảo, đối chiểu

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

CHUYÊN ĐỀ TÍCH PHÂN LUYỆN THI THPT QUỐC GIA

A. KIẾN THỨC CƠ BẢN

1.   Định nghĩa

Cho là hàm số liên tục trên đoạn [a;b]. Giả sử F là một nguyên hàm của f trên [a;b]. Hiệu số F(b) - F(a) được gọi là tích phân từ a

đến b (hay tích phân xác định trên đoạn [a;b] của hàm số f (x), kí hiệu là  abf(x)dx

 Ta dùng kí hiệu F (x) b = F (b) - F (a) để chỉ hiệu số  F(b) - F(a) . Vậy abf(x)dx=F(x)|ab = F (x) b = F (b) - F (a) .

Nhận xét: Tích phân của hàm số từ a đến b có thể kí hiệu bởi abf(x)dx hay abf(t)dt . Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào cách ghi biến số.

Ý nghĩa hình học của tích phân: Nếu hàm số f   liên tục và không âm trên đoạn [a;b] thì tích phân  abf(x)dx là diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f (x) , trục Ox và hai đường thẳng x = a, x = b. Vậy S abf(x)dx

2. Tính chất của tích phân

1.aaf(x)dx =0   

2. abf(x)dx =-baf(x)dx

3. abf(x)dx +bcf(x)dx =acf(x)dx (a<b<c)   

4. aakf(x)dx =kaaf(x)dx

5. aaf(x)±g(x)dx =abf(x)dx±abg(x)dx

B. KỸ NĂNG CƠ BẢN

1. Một số phương pháp tính tích phân

I. Dạng 1: Tính tích phân theo công thức

Ví dụ 1: Tính các tính phân sau:

a, 01dx1+x3 

b, 01xx+1dx     

c, 012x+9x+3dx       

d, 01x4-x2dx

Hướng dẫn giải

a, 01dx1+x3=01d(1+x)1+x3=-12(x+1)2|01=38

b, 01xx+1dx=011-1x+1dx=x-lnx+1|01=1-ln2

c, 012x+9x+3dx=012+3x+3dx=2x+3lnx+3|01=3+6ln2-2ln3

d, 01x4-x2dx=-1201d(4-x2)4-x2=ln4-x2|01=ln34

Ví dụ 2: Tính tích phân sau:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 3: Tính tích phân sau:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 4: Tính tích phân sau:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm
Các dạng bài tập về Tích phân có đáp án (trang 1)
Trang 1
Các dạng bài tập về Tích phân có đáp án (trang 2)
Trang 2
Các dạng bài tập về Tích phân có đáp án (trang 3)
Trang 3
Các dạng bài tập về Tích phân có đáp án (trang 4)
Trang 4
Các dạng bài tập về Tích phân có đáp án (trang 5)
Trang 5
Các dạng bài tập về Tích phân có đáp án (trang 6)
Trang 6
Các dạng bài tập về Tích phân có đáp án (trang 7)
Trang 7
Các dạng bài tập về Tích phân có đáp án (trang 8)
Trang 8
Các dạng bài tập về Tích phân có đáp án (trang 9)
Trang 9
Các dạng bài tập về Tích phân có đáp án (trang 10)
Trang 10
Tài liệu có 30 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống