Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ Dạng bài tập Ứng dụng tích phân tính diện tích hình phẳng Toán lớp 12, tài liệu bao gồm 9 trang, tuyển chọn Dạng bài tập Ứng dụng tích phân tính diện tích hình phẳng đầy đủ lý thuyết, phương pháp giải chi tiết và bài tập có đáp án (có lời giải), giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi tốt nghiệp THPT môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.
Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:
Dạng bài tập Ứng dụng tích phân tính diện tích hình phẳng
1. Định lý: Cho hàm số y=f(x) liên tục, không âm trên [a;b]. Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b là:
2. Bài toán liên quan
Bài toán 1: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x) liên tục trên đoạn [a;b], trục hoành và hai đường thẳng x=a, x=b được xác định:
Bài toán 2: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), y=g(x) liên tục trên đoạn [a;b] và hai đường thẳng x=a, x=b được xác định:
Chú ý:
- Nếu trên đoạn [a;b], hàm số f(x) không đổi dấu thì:
- Nắm vững cách tính tích phân của hàm số có chứa giá trị tuyệt đối
Bài toán 3: Diện tích của hình phẳng giới hạn bởi các đường x=g(y), x=h(y) và hai đường thẳng y=c, y=d được xác định:
Bài toán 4: Diện tích hình phẳng giới hạn bởi 2 đồ thị (C1): f1(x), (C2):f2(x) là:
Trong đó: x1, xn tương ứng là nghiệm nhỏ nhất của phương trình f(x)=g(x)
Bài 1: Tính diện tích S của hình phẳng giới hạn bởi Parabol (P):y=3-x2, đường thẳng y=-2x+3, trục tung và x=1.
Lời giải:
Phương trình hoành độ giao điểm: 3-x2=-2x+3 ⇔ x2-2x=0
Diện tích cần tìm được tính bằng công thức sau đây:
Bài 2: Tính diện tích S của hình phẳng giới hạn bởi các đường y=-2x2 và y=-2x-4.
Lời giải:
Phương trình hoành độ giao điểm của y=-2x2 và y=-2x-4 là:
-2x2=-2x-4 ⇔ -2x2+2x+4=0
Bài 3: Tính diện tích S của hình phẳng giới hạn bởi các đường y=x3-3x và y=x
Lời giải:
Ta có phương trình hoành độ giao điểm x3-4x=0
Diện tích
Bài 1: Tính diện tích hình phẳng được giới hạn bởi các đường y=2x-x2 và đường thẳng x+y=2
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=x2+x-1 và y=x4+x-1 là
x2+x-1=x4+x-1 ⇔ x2 (x2-1)=0
Ta có: x2 (x2-1) ≤ 0 ∀x ∈ [-1;1]. Do đó:
Bài 2: Tính diện tích S của hình phẳng giới hạn bởi các đường x3-x và y=x-x2.
Lời giải:
Phương trình hoành độ giao điểm
x3-x=-x2+x ⇔ x=0; x=-2; x=1
Bài 3: Tính diện tích hình phẳng giới hạn bởi các đường y=cosx; Ox; Oy; x=π
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=cosx và trục Ox (y=0) là:
cosx=0 ⇔ x=π/2+kπ(k ∈ Z)
Xét trên [0;π] nên x=π/2.
Do đó
Bài 4: Tính Diện tích hình phẳng giới hạn bởi các đường y=ex; y=1 và x=1
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=ex và trục y=1 là:
ex=1 ⇔ x=0.
Bài 5: Tính diện tích hình phẳng được giới hạn bởi các đường y=(e+1)x ,y=(1+ex )x
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=(e+1)x và y=(1+ex)x là:
(e+1)x = (1+ex )x
Bài 6: Tính diện tích hình phẳng được giới hạn bởi các đường y=sin2x,y=cosx và hai đường thẳng x=0 ,x=π/2
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=sin2x và y=cosx là:
sin2x=cosx ⇔ cosx.(2sinx-1)=0
Xét trên [0;π/2] nên nhận x=π/6
Bài 7: Tính diện tích hình phẳng được giới hạn bởi hai đường y=√x và y=x2
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm sốy=√xvà y=x2 là :
x2=√x ⇔ x=x4 ⇔ x4-x=0
Ta có: x2-√x ≤ 0,∀x ∈ [0;1]. Do đó:
Bài 8: Tính diện tích hình phẳng giới hạn bởi y=sinx; y=cosx; x=0; x=π
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=sinx; y=cosx; x=0; x=π là:
sinx=cosx ⇔ tanx=1 ⇔ x=π/4+kπ,k ∈ Z
Vì x ∈ [0;π] nên x=π/4.
Ta có: sinx-cosx ≤ 0, ∀x ∈ [0;π/4]; sinx-cosx ≥ 0,∀x ∈ [π/4;π]
Bài 9: Tính diện tích hình phẳng giới hạn bởi
Lời giải:
Bài 10: Tính diện tích hình phẳng giới hạn bởi các đường
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=2x và đồ thị hàm số y=8/x là
Diện tích hình phẳng cần tìm là: