Tailieumoi.vn xin giới thiệu Bài tập Toán 9 Chương 2 Bài 2:Đường kính và dây của đường tròn . Tính chất đối xứng của đường tròn. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 9. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 2 Bài 2: Đường kính và dây của đường tròn. Tính chất đối xứng của đường tròn. Mời các bạn đón xem:
Bài tập Toán 9 Chương 2 Bài 2: Đường kính và dây của đường tròn
A. Bài tập Đường kính và dây của đường tròn
I. Bài tập trắc nghiệm
Câu 1: Cho đường tròn (O) đường kính AB và dây CD không đi qua tâm. Khẳng định nào sau đây là đúng?
A. AB > CD
B. AB = CD
C. AB < CD
D. AB ≤ CD
Trong các dây của đường tròn, dây lớn nhất là đường kính
Chọn đáp án A.
Câu 2: Cho đường tròn (O) có hai dây AB, CD không đi qua tâm. Biết rằng khoảng cách từ tâm đến hai dây là bằng nhau. Kết luận nào sau đây là đúng
A. AB > CD
B. AB = CD
C. AB < CD
D. AB // CD
Trong một đường tròn: Hai dây cách đều tâm thì bằng nhau
Chọn đáp án B.
Câu 3: “Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì…với dây ấy”. Điền vào dấu…cụm từ thích hợp
A. nhỏ hơn
B. bằng
C. song song
D. vuông góc
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy
Chọn đáp án D.
Câu 4: Chọn khẳng định sai trong các khẳng định sau. Trong hai dây của một đường tròn
A. Dây nào lớn hơn thì dây đó xa tâm hơn
B. Dây nào nhỏ hơn thì đây đó xa tâm hơn
C. Dây nào gần tâm hơn thì dây đó lớn hơn
D. Hai dây bằng nhau thì cách đều tâm
Trong một đường tròn:
+ Hai dây bằng nhau thì cách đều tâm
- Trong hai dây của đường tròn:
+ Dây nào lớn hơn thì dây đó gần tâm hơn
+ Dây nào gần tâm hơn thì dây đó lớn hơn
Nên phương án B, C, D đúng
Chọn đáp án A.
Câu 5: Cho đường tròn (O) có bán kính R = 5 cm. Khoảng cách từ tâm đến dây AB là 3 cm. Tính độ dài dây AB
A. AB = 6 cm
B. AB = 8 cm
C. AB = 10 cm
D. AB = 12 cm
Kẻ OH ⊥ AB tại H suy ra H là trung điểm của AB
Xét tam giác OHB vuông tại H có OH = 3; OB = 5 . Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8 cm
Vậy AB = 8 cm
Chọn đáp án B.
Câu 6: Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính BC.
Gọi H là trung điểm của BC.
Do dây BC vuông góc với OA tại H nên ta có:
Áp dụng định lí Pytgo vào tam giác OHB vuông tại H ta có:
Theo định lí quan hệ vuông góc đường kính và dây ta có: H là trung điểm BC nên:
Chọn đáp án A.
Câu 7: Cho ΔABC, các đường cao BD và CE. Tìm mệnh đề sai
A. Bốn điểm B, E, D và C cùng nằm trên một đường tròn.
B. DE < BC.
C. Tâm đường tròn ngoại tiếp tứ giác BCDE là trung điểm BC
D. Tất cả sai.
Gọi I là trung điểm BC.
Tam giác BCE vuông tại E có đường trung tuyến EI ứng với cạnh huyền BC nên:
(1)
Tam giác BCD vuông tại D có DI là đường trung tuyến ứng với cạnh huyền BC nên:
(2)
Từ ( 1) và (2) suy ra:
Do đó, I là tâm đường tròn ngoại tiếp tứ giác BCDE.
Khi đó, BC là đường kính và DE là dây không đi qua tâm nên: BC > DE.
Chọn đáp án D.
Câu 8: Cho hình chữ nhật ABCD. Tìm khẳng định đúng
A. AC < BD
B. AB > AC
C. AC > CD
D. AB > BC
Gọi I là giao điểm hai đường chéo AC và BD,
Theo tính chất hình chữ nhật ta có:
Do đó, I là tâm đường tròn ngoại tiếp hình chữ nhật ABCD có AC và BD là đường kính.
AB, BC, CD và DA là các dây.
Chọn đáp án C.
Câu 9: Cho đường tròn tâm O , bán kính R = 5cm , có dây AB = 8cm và M là trung điểm của AB. Tính khoảng cách từ O đến AB ?
A. 3cm
B. 4cm
C. 2cm
D. 5 cm
Vì M là trung điểm của AB nên ta có:
Theo quan hệ vuông góc giữa đường kính và dây ta có:
OM ⊥ AB
Áp dụng định lí Pytago vào tam giác OAM ta có:
OM2 = OA2 - AM2 = 52 - 42 = 9 ⇒ OM = 3 cm
Chọn đáp án A.
Câu 10: Cho đường tròn tâm O có dây AB = 16cm. Gọi M là trung điểm AB. Biết khoảng cách từ O đến AB bằng 6. Tính bán kính đường tròn.
A. 7cm
B. 8cm
C. 10cm
D. 12 cm
Vì M là trung điểm của AB nên ta có:
Theo quan hệ vuông góc giữa đường kính và dây ta có;
Mà khoảng cách từ O đến AM bằng 6 cm nên OM = 6 cm
Áp dụng định lí pytago vào tam giác OAM vuông ta có:
OA2 = OM2 + AM2 = 62 + 82 = 100 nên OA = 10 cm
Suy ra: bán kính đường tròn đã cho là R = 10 cm.
Chọn đáp án C.
Câu 11: Cho đường thẳng d cắt đường tròn (O) tại hai điểm phân biệt A, B. Biết khoảng cách từ điểm O đến đường thẳng d bằng 3cm và độ dài đoạn thẳng AB bằng 8cm. Bán kính của đường tròn (O) bằng:
A. 7cm
B. 11cm
C. 73cm
D. 5cm
Kẻ OH ⊥ AB. Khi đó H là trung điểm của AB (mối liên hệ giữa đường kính và dây cung)
Áp dụng định lý Pytago cho ΔAOH vuông tại H ta có:
OA2 = AH2 + HO2 = 42 + 32 = 25 ⇒ R = OA = 5cm
Đáp án cần chọn là: D
Câu 12: Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2cm; IB = 4cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:
A. 4cm
B. 1cm
C. 3cm
D. 2cm
Xét đường tròn tâm (O).
Kẻ OE ⊥ AB tại E suy ra E là trung điểm của AB, kẻ OF ⊥ CD tại F.
Vì dây AB = AC nên OE = OF (hai dây bằng nhau cách đều tâm)
Xét tứ giác OEIF nên OEIF là hình chữ nhật và OE = OF nên OEIF là hình vuông ⇒ OE = OF = EI
Mà AB = IA + IB = 6cm ⇒ EB = 3cm ⇒ EI = EB – IB = 1cm nên OE = OF = 1cm
Vậy tổng khoảng cách từ tâm đến hai dây là AB, CD là 2cm
Đáp án cần chọn là: D
Câu 13: Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 6cm; IB = 3cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:
A. 4cm
B. 1cm
C. 3cm
D. 2cm
Xét đường tròn tâm (O)
Kẻ OE AB tại E suy ra E là trung điểm của AB, kẻ OF CD tại F.
Vì dây AB = AC nên OE = OF (hai dây bằng nhau cách đều tâm)
Xét tứ giác OEIF có nên OEIF là hình chữ nhật và OE = OF nên OEIF là hình vuông ⇒ OE = OF = EI
Mà AB = IA + IB = 9cm ⇒ EB = 4,5cm ⇒ EI = EB – IB = 1,5cm nên OE = OF = 1,5cm
Vậy tổng khoảng cách từ tâm đến hai dây là AB, CD là 1,5 + 1,5 = 3cm
Đáp án cần chọn là: C
Câu 14: Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 16cm; CD = 12cm; MC = 2cm. Khoảng cách từ tâm O đến dây AB là?
A. 4cm
B. 5cm
C. 3cm
D. 2cm
Xét đường tròn tâm (O)
Kẻ OE ⊥ AB tại E suy ra E là trung điểm của AB, kẻ OF ⊥ CD tại F suy ra F là trung điểm CD
Xét tứ giác OEMF có nên OEIF là hình chữ nhật, suy ra FM = OE
Ta có CD = 12cm ⇒ FC = 6cm mà MC = 2cm ⇒ FM = FC – MC = 4cm nên
OE = 4cm
Vậy khoảng cách từ tâm O đến dây AB là 4cm
Đáp án cần chọn là: A
Câu 15: Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết CD = 8cm; MC = 1cm. Khoảng cách từ tâm O đến dây AB là?
A. 4cm
B. 5cm
C. 3cm
D. 2cm
Lời giải:
Kẻ OE ⊥ AB tại E suy ra E là trung điểm của AB, kẻ OF ⊥ CD tại F suy ra F là trung điểm CD
Xét tứ giác OEMF có nên OEIF là hình chữ nhật, suy ra FM = OE
Ta có CD = 8cm ⇒ FC = 4cm mà MC = 1cm ⇒ FM = FC – MC = 4 – 1 = 3cm
nên OE = FM = 3cm
Vậy khoảng cách từ tâm O đến dây AB là 3cm
Đáp án cần chọn là: C
II. Bài tập tự luận có lời giải
Câu 1: Gọi AB là một dây bất kỳ của đường tròn (O; R). Chứng minh rằng AB ≤ 2R
+ Trường hợp 1: AB là đường kính
⇒ AB = 2R
+ Trường hợp 2: AB không là đường kính
Xét tam giác AOB, áp dụng bất đẳng thức tam giác ta có:
AB < AO + OB = R + R = 2R
Vậy ta luôn có AB ≤ 2R
Câu 1: Cho hình vẽ sau, tính độ dài dây AB khi biết OA = 13cm; AM = MB; OM = 5cm.
Lời giải:
Áp dụng định lý: “ Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy “
Khi đó ta có: OM ⊥ AB.
Áp dụng định lý Py – ta – go ta có:
⇒ AB = 2.AM = 2.12 = 24 (cm)
III. Bài tập vận dụng
Câu 1: Cho tam giác ABC có đường cao là BD, CE. Chứng minh rằng B, D, C, E cùng một đường tròn và ED < BC .
Câu 2: Cho đường tròn tâm O đường kính AB, dây CD không cắt AB. Gọi H, K lần lượt là hình chiếu vuông góc của A, B lên CD. Chứng minh: CH = DK
B. Lý thuyết Đường kính và dây của đường tròn
Định nghĩa 1.
Dây cung là đoạn thẳng nối hai điểm phân biệt cùng nằm trên một đường tròn.
Dây cung đi qua tâm của đường tròn gọi là đường kính của đường tròn.
1. Tính chất đặc trưng của đường kính
Định lí 1. Trong các dây cung của một đường tròn, đường kính là dây cung lớn nhất.
2. Quan hệ vuông góc giữa đường kính và dây
Định lí 2. Trong một đường tròn
1) Đường kính vuông góc với một dây cung thì đi qua trung điểm của dây đó.
2) Đường kính đi qua trung điểm của một dây cung không đi qua tâm của đường tròn thì vuông góc với dây đó.
Định nghĩa 2. Khoảng cách từ một điểm O đến đường thẳng a là độ dài đường vuông góc OH kẻ từ O đến a.
3. Dấu hiệu nhận biết đường thẳng song song cách đều
Tính chất 3. Những đường thẳng song song chắn trên một đường thẳng cho trước những đoạn thẳng liên tiếp bằng nhau thì chúng song song cách đều.
Tính chất 4. Những đường thẳng song song cách đều chắn trên một đường thẳng bất kì những đoạn thẳng liên tiếp bằng nhau.
4. Trong một đường tròn
Định lí 3. 1) Hai dây bằng nhau thì cách đều tâm.
2) Hai dây cách đều tâm thì bằng nhau.
5. Trong hai dây của một đường tròn
Định lí 4. 1) Dây nào lớn hơn thì dây đó gần tâm hơn.
2) Dây nào gần tâm hơn thì dây đó lớn hơn.