Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ bài tập trắc nghiệm Cách chứng minh hai đường thẳng song song trong không gian Toán lớp 11, tài liệu bao gồm 6 trang, tuyển chọn bài tập trắc nghiệm Cách chứng minh hai đường thẳng song song trong không gian có phương pháp giải chi tiết và bài tập có đáp án (có lời giải), giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.
Phương pháp
- Tóm tắt lý thuyết ngắn gọn Cách chứng minh hai đường thẳng song song trong không gian.
- Gồm 7 bài tập tự luyện đa dạng có đáp án và lời giải chi tiết Cách chứng minh hai đường thẳng song song trong không gian.
Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:
DẠNG 1. CÁCH CHỨNG MINH HAI ĐƯỜNG THẲNG SONG SONG TRONG KHÔNG GIAN
Phương pháp: Có thể sử dụng 1 trong các cách sau:
1. Chứng minh 2 đường thẳng đó đồng phẳng, rồi áp dụng phương pháp chứng minh song song trong hình học phẳng (như tính chất đường trung bình, định lí Talét đảo, …)
2. Chứng minh 2 đường thẳng đó cùng song song với đường thẳng thứ ba.
3. Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
4. Áp dụng định lí về giao tuyến song song.
Câu 1: Cho hình chóp có đáy là hình bình hành. Gọi lần lượt là trung điểm . Trong các đường thẳng sau, đường thẳng nào không song song với ?
A. B. C. D.
Hướng dẫn giải:
Chọn C.
Ta có là đường trung bình tam giác nên .
D. đúng.
là hình bình hành nên . Suy ra . B. đúng.
là đường trung bình tam giác nên . Suy ra . A. đúng.
Do đó chọn đáp án C.
Câu 2: Cho hình chóp . Gọi lần lượt là trung điểm của các cạnh và Trong các đường thẳng sau đây, đường thẳng nào không song song với ?
A. B. C. D.
Hướng dẫn giải:
Chọn D.
Nếu là hình bình hành thì sẽ song song với các đường thẳng và Do vậy các phương án A, B và C đều sai. |
Câu 3: Cho hình hộp . Khẳng định nào sau đây SAI?
A. và là hai hình bình hành có chung một đường trung bình.
B. và chéo nhau.
C. và chéo nhau.
D. và chéo nhau.
Hướng dẫn giải:
Chọn D.
và song song với nhau.
Câu 4: Cho tứ diện . Gọi lần lượt là trung điểm của các cạnh .
Mệnh đề nào sau đây sai?
A. và . B. và .
C. là hình bình hành. D. và chéo nhau.
Hướng dẫn giải:
Chọn D.
Có lần lượt là đường trung bình tam giác nên .
Nên
là hình bình hành.
Do đó và cùng thuộc mặt phẳng .
Câu 5: Cho hình chóp S.ABCD đáy hình bình hành. Gọi A’; B’; C’; D’ lần lượt là trung điểm của các cạnh SA; SB; SC và SD. Trong các đường thẳng sau đây, đường thẳng nào không song song với A’B’ ?
A. AB B. CD C. C’D’ D. SC
Hướng dẫn giải:
Chọn D
+ Do A’ và B’ là trung điểm của SA; SB
⇒ A’B’ là đường trung bình của tam giác SAB.
⇒ A’B’// AB (1) .
+ Tương tự; C’D’ // CD (2)
+ Lại có: ABCD là hình bình hành nên AB // CD (3)
Từ (1); (2) và (3) suy ra: A’B’ // AB // CD // C’D’
⇒ D sai
Câu 6: Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy lớn AB. Gọi M; N lần lượt là trung điểm của SA và SB. Gọi P là giao điểm của SC và (ADN) , I là giao điểm của AN và DP. Khẳng định nào sau đây là đúng?
A. SI song song với CD
B. SI chéo với CD
C. SI cắt vớ CD
D. SI trùng với CD
Hướng dẫn giải:
Chọn A
+ Trong (ABCD) gọi E = AD ∩ BC, trong (SCD) gọi P = SC ∩ EN
Ta có E ∈ AD ⊂ (ADN) ⇒ EN ⊂ (AND) ⇒ P ∈ (AND)
Vậy P = SC ∩ (ADN)
Câu 7: Cho hình chóp S. ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a và BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB; SC lần lượt tại M; N. Mặt phẳng (BCI) cắt SA; SD tại P; Q. Khẳng định nào sau đây là đúng?
A. MN song song với PQ
B. MN chéo vớI PQ
C. MN cắt vớI PQ
D. MN trùng với PQ
Hướng dẫn giải:
Chọn A