Nghệ thuật cắt giấy Kirigami của Nhật Bản đã sử dụng rất nhiều phép đối xứng khi cắt

628

Với giải Bài 6 trang 24 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 4: Phép đối xứng tâm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài 4: Phép đối xứng tâm

Bài 6 trang 24 Chuyên đề Toán 11Nghệ thuật cắt giấy Kirigami của Nhật Bản đã sử dụng rất nhiều phép đối xứng khi cắt để tạo ra các hình đẹp. Hãy tìm trục đối xứng và tâm đối xứng của các hình trong Hình 13.

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

⦁ Trục đối xứng của các hình trong Hình 13:

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chọn đường thẳng d trên hoa văn thứ nhất (như hình vẽ).

Lấy điểm A nằm trên hình thứ nhất nhưng không nằm trên đường thẳng d.

Ta đặt A’ = Đd(A).

Khi đó A’ nằm trên hình thứ nhất.

Lấy điểm B nằm trên hình thứ nhất và nằm trên đường thẳng d.

Ta thấy B = Đd(B).

Tương tự như vậy, ta chọn các điểm khác bất kì nằm trên hình thứ nhất, ta đều xác định được ảnh của các điểm đó qua Đd trên hình thứ nhất.

Do đó phép đối xứng trục d biến hình thứ nhất thành chính nó.

Vậy đường thẳng d là trục đối xứng của hình thứ nhất.

Chú ý: Hình hoa văn đầu tiên có 4 trục đối xứng (d, d1, d2, d3).

Gọi e, f theo thứ tự là đường thẳng nằm trên hình thứ hai và hình thứ ba (hình vẽ).

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chứng minh tương tự như trên, ta cũng xác định được e, f lần lượt là trục đối xứng của hình thứ hai và hình thứ ba.

Chú ý:

– Hình hoa văn thứ hai có 6 trục đối xứng (e, e1, e2, e3, e4, e5).

– Hình hoa văn thứ ba có 6 trục đối xứng (f, f1, f2, f3, f4, f5).

⦁ Tâm đối xứng của các hình trong Hình 13:

Giả sử ta chọn điểm O trên hình đầu tiên (hình vẽ).

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lấy điểm E bất kì trên hình thứ nhất sao cho E ≠ O.

Khi đó ta luôn xác định được một điểm E’ trên hình thứ nhất sao cho E’ = ĐO(E).

Lấy điểm F trùng O. Khi đó ta có F = ĐO(F).

Tương tự như vậy, ta chọn các điểm khác bất kì nằm trên hình thứ nhất, ta đều xác định được ảnh của các điểm đó qua ĐO trên hình thứ nhất.

Do đó phép đối xứng tâm O biến hình thứ nhất thành chính nó.

Vậy O là tâm đối xứng của hình thứ nhất.

Chọn I, J theo thứ tự là điểm nằm trên hình thứ hai và hình thứ ba (hình vẽ).

Bài 6 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chứng minh tương tự như trên, ta cũng xác định được I, J lần lượt là tâm đối xứng của hình thứ hai và hình thứ ba.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá