Bạn cần đăng nhập để báo cáo vi phạm tài liệu

Thực hành 1 trang 53 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

869

Với giải Thực hành 1 trang 53 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Cấp số cộng

Thực hành 1 trang 53 Toán 11 Tập 1: Chứng minh mỗi dãy số sau là cấp số cộng. Xác định công sai của mỗi cấp số cộng đó.

a) 3; 7; 11; 15; 19; 23.

b) Dãy số (un) với un = 9n – 9.

c) Dãy số (vn) với vn = an + b, trong đó a và b là các hằng số.

Lời giải:

a) Dãy số 3; 7; 11; 15; 19; 23 là cấp số cộng với công sai d = 4.

b) Ta có: u1 = 9.1 – 9 = 0.

un+1 = 9(n + 1) – 9 = 9n – 9 + 9 = un + 9, ∀n ∈ ℕ*.

Vậy dãy số (un) là cấp số cộng với số hạng đầu u1 = 0 và công sai d = – 3.

c) Ta có: v1 = a.1 + b = a + b.

vn+1 = a(n + 1) + b = an + a + b = an + b + a = vn + a, ∀n ∈ ℕ*.

Vậy dãy số (vn) là cấp số cộng với số hạng đầu v1 = a + b và công sai là d = a.

Lý thuyết Cấp số cộng

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d, nghĩa là:

un=un1+d,n2

Số d được gọi là công sai của cấp số cộng.

* Nhận xét: Nếu (un) là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:

uk=uk1+uk+12(k2)

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá