Với tóm tắt lý thuyết Toán lớp 11 Bài 2: Giới hạn của hàm số sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 11.
Lý thuyết Toán lớp 11 Bài 2: Giới hạn của hàm số
A. Lý thuyết Giới hạn của hàm số
I. Giới hạn hữu hạn của hàm số tại một điểm
1. Định nghĩa
Cho khoảng K chứa điểm và hàm số xác định trên K hoặc trên . Hàm số có giới hạn là số L khi dần tới nếu với dãy số bất kì, và , ta có
Kí hiệu hay , khi .
2. Phép toán trên giới hạn hữu hạn của hàm số
a, Nếu và thì
b, Nếu với mọi và thì và .
3. Giới hạn một phía
- Cho hàm số xác định trên khoảng . Số L được gọi là giới hạn bên trái của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
- Cho hàm số xác định trên khoảng . Số L là giới hạn bên của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
*Nhận xét:
II. Giới hạn hữu hạn của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
, ,.
III. Giới hạn vô cực (một phía) của hàm số tại một điểm
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi nếu với dãy số bất kì, và ta có .
Kí hiệu hay khi
- Các giới hạn được định nghĩa tương tự.
IV. Giới hạn vô cực của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi về bên trái nếu với dãy số bất kì, và ta có , kí hiệu .
Kí hiệu hay khi .
- Các giới hạn được định nghĩa tương tự.
* Chú ý:
B. Bài tập Giới hạn của hàm số
Bài 1. Cho f(x) =1 – x và g(x) = 2x3. Tính các giới hạn sau:
.
Hướng dẫn giải
.
Bài 2. Sử dụng định nghĩa tìm giới hạn của hàm số:
a) ;
b) .
Hướng dẫn giải
a) Giả sử (xn) là một dãy bất kì và xn → 1 khi n → +∞.
Khi đó .
Vậy .
b) Giả sử (xn) là một dãy bất kì thỏa mãn xn ≠ –2 và xn → –2 khi n → +∞.
Vậy .
Bài 3. Tìm giới hạn của các hàm số sau:
a) ;
b) ;
c)
Hướng dẫn giải
.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 1: Giới hạn của dãy số
Lý thuyết Bài 2: Giới hạn của hàm số
Lý thuyết Bài 3: Hàm số liên tục
Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian
Lý thuyết Bài 2: Hai đường thẳng song song trong không gian
Lý thuyết Bài 3: Đường thẳng và mặt phẳng song song
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song