Với tóm tắt lý thuyết Toán lớp 11 Bài 1: Dãy số sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 11.
Lý thuyết Toán lớp 11 Bài 1: Dãy số
A. Lý thuyết Dãy số
1. Định nghĩa dãy số
- Hàm số u xác định trên tập các số nguyên dương được gọi là một dãy số vô hạn (gọi tắt là dãy số), nghĩa là
Dãy số trên được kí hiệu là .
- Dãy số được viết dưới dạng khai triển
- Số là số hạng đầu; là số hạng thứ n và gọi là số hạng tổng quát của dãy số.
*Chú ý: Nếu thì được gọi là dãy số không đổi.
Mỗi hàm số u xác định trên tập được gọi là một dãy số hữu hạn.Dạng khai triển của dãy số hữu hạn là .
Trong đó, số gọi là số hạng đầu, là số hạng cuối.
2. Cách cho một dãy số
Một dãy số có thể cho bằng:
- Liệt kê các số hạng (với các dãy hữu hạn).
- Công thức của số hạng tổng quát .
- Phương pháp truy hồi:
+) Cho số hạng thứ nhất (hoặc một vài số hạng đầu tiên)
+) Cho một công thức tính theo (hoặc theo vài số hạng đứng ngay trước nó).
- Phương pháp mô tả.
3. Dãy số tăng, dãy số giảm
Dãy số được gọi là dãy số tăng nếu ta có .
Dãy số được gọi là dãy số giảm nếu ta có .
4. Dãy số bị chặn
Dãy số được gọi là bị chặn trên nếu số M sao cho .
Dãy số được gọi là bị chặn dưới nếu số m sao cho .
Dãy số được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho .
Sơ đồ tư duy Dãy số.
B. Bài tập Dãy số
Bài 1. Cho dãy số (un) được xác định bởi với n ∈ ℕ*.
a) Liệt kê 3 số hạng đầu của dãy số (un).
b) Xét tính tăng, giảm của dãy số (un).
Hướng dẫn giải
a) Ta có:
b) Ta có:
⇔ un + 1 < un.
Vậy (un) là dãy số giảm.
Bài 2. Xét tính bị chặn của dãy số sau: un = 4 – 3n – n2.
Hướng dẫn giải
Ta có: un + 1 – un = 4 – 3(n + 1) – (n + 1)2 – (4 – 3n – n2)
= 4 – 3n – 3 – n2 – 2n – 1 – 4 + 3n + n2
= − 2n − 4
⇔ un + 1 < un.
⇒ (un) là dãy số giảm, tức là n càng tăng thì un càng giảm ⇒ (un) không bị chặn dưới.
Vậy (un) là dãy số bị chặn trên.
Bài 3. Cho dãy số (un) bởi hệ thức truy hồi: Tìm ra công thức số hạng tổng quát của dãy số này.
Hướng dẫn giải
Ta có:
Ta nhận thấy u1 = 21 – 2; u2 = 22 – 2; u3 = 23 – 2; u4 = 24 – 2.
Vậy công thức số hạng tổng quát của dãy số (un) là un = 2n – 2.
Bài 4. Cho dãy số (un), biết Số là số hạng thứ mấy của dãy số?
A. 8;
B. 6;
C. 5;
D. 7.
Hướng dẫn giải
Đáp án đúng là: D
Ta cần tìm n sao cho
Video bài giảng Toán 11 Bài 1: Dãy số - Chân trời sáng tạo
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 5: Phương trình lượng giác cơ bản
Lý thuyết Bài 1: Giới hạn của dãy số
Lý thuyết Bài 2: Giới hạn của hàm số
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục