Với giải Luyện tập 3 trang 103 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 3: Đường thẳng và mặt phẳng song song
Luyện tập 3 trang 103 Toán 11 Tập 1: Ở Ví dụ 3, xác định giao tuyến của mặt phẳng (R) với các mặt phẳng (ABD), (BCD), (ACD).
Lời giải:
• Áp dụng định lí 2, ta có:
(R) đi qua M và song song với BD, mà BD ⊂ (ABD) nên mặt phẳng (R) cắt (ABD) theo giao tuyến a đi qua M và song song với BD.
• Gọi N là giao điểm của p và BC.
Khi đó N ∈ (R).
Áp dụng định lí 2, ta có:
(R) đi qua N và song song với BD, mà BD ⊂ (BCD) nên mặt phẳng (R) cắt (BCD) theo giao tuyến b đi qua N và song song với BD.
• Gọi P là giao điểm của a và AD, Q là giao điểm của b và CD.
Khi đó P ∈ (R) và P ∈ (ACD) nên P là giao điểm của (R) và (ACD);
Q ∈ (R) và Q ∈ (ACD) nên Q là giao điểm của (R) và (ACD).
Vậy (R) ∩ (ACD) = PQ.
Lý thuyết Điều kiện và tính chất
- Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với một đường thẳng a’ nằm trong (P) thì ta nói .
- Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì b//a.
- Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Câu hỏi khởi động trang 101 Toán 11 Tập 1: Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).....
Hoạt động 1 trang 101 Toán 11 Tập 1: a) Trong Hình 44, thanh barrier và mặt phẳng gợi nên hình ảnh đường thẳng d và mặt phẳng (P). Cho biết đường thẳng d và mặt phẳng (P) có điểm chung hay không....
Luyện tập 1 trang 102 Toán 11 Tập 1: Quan sát các xà ngang trên sân tập thể dục Hình 47. Hãy cho biết ở vị trí tương đối của các xà ngang đó đối với mặt sàn.....
Hoạt động 2 trang 102 Toán 11 Tập 1: Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) (Hình 48). Gọi (Q) là mặt phẳng xác định bởi hai đường thẳng song song a, a’....
Luyện tập 2 trang 102 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không? Vì sao?...
Hoạt động 3 trang 102, 103 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P). Cho mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b. (Hình 51).....
Luyện tập 3 trang 103 Toán 11 Tập 1: Ở Ví dụ 3, xác định giao tuyến của mặt phẳng (R) với các mặt phẳng (ABD), (BCD), (ACD).....
Hoạt động 4 trang 103 Toán 11 Tập 1: Cho hai mặt phẳng (P), (Q) cùng song song với đường thẳng a và (P) ∩ (Q) = b (Hình 54).....
Luyện tập 4 trang 104 Toán 11 Tập 1: Trong Hình 56, hai mặt tường của căn phòng gợi nên hình ảnh hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến b, mép cột gợi nên hình ảnh đường thẳng a. Cho biết đường thẳng a có song song với giao tuyến b hay không....
Bài 1 trang 104 Toán 11 Tập 1: Trong phòng họp của lớp, hãy nêu những hình ảnh về đường thẳng song song với mặt phẳng.....
Bài 2 trang 104 Toán 11 Tập 1: Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P); mép trên và mép dưới của lát cắt lần lượt gợi nên hình ảnh hai đường thẳng a và b trong đó a song song với mặt phẳng (P). Cho biết hai đường thẳng a, b có song song với nhau hay không.....
Bài 3 trang 104 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD)....
Bài 4 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh rằng đường thẳng MN song song với giao tuyến d của hai mặt phẳng (SBC) và (SAD)....
Bài 5 trang 104 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF)....
Bài 6 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.....
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian