Tình huống mở đầu trang 83 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

722

Với giải Tình huống mở đầu trang 83 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Tình huống mở đầu trang 83 Toán 10 Tập 2: Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, trúng giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}.

Lời giải:

Phép thử ở tình huống trên là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45.

Không gian mẫu Ω là tập hợp tất cả các tập con có sáu phần tử của tập hợp {1; 2; …; 45}.

Khi đó số phần tử của Ω là n(Ω) = C456 = 8 145 060.

Gọi F: “ Bạn An trúng giải độc đắc”, khi đó bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.

Chỉ có một kết quả thuận lợi cho biến cố F là: {5; 13; 20; 31; 32; 35}.

⇒ n(F) = 1.

P(F)=n(F)n(Ω)=18 145 060.

Vậy xác suất để bạn An trúng giải độc đắc là 18 145 060.

Gọi G: “ Bạn An trúng giải nhất”, khi đó bạn An chọn bộ sáu số trong đó có năm số thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một số còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.

Khi đó G là tập hợp tất cả các tập con gồm sáu phần tử của tập hợp {1; 2; …; 45}, trong đó năm phần tử của nó thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một phần tử còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.

Mỗi phần tử của tập G được hình thành qua hai công đoạn:

+ Công đoạn 1: Chọn năm phần tử trong tập {5; 13; 20; 31; 32; 35}, có  C65 = 6 (cách chọn).

+ Công đoạn 2: Chọn một phần tử còn lại trong 39 phần tử không thuộc tập {5; 13; 20; 31; 32; 35}, có  C391 = 39 (cách chọn).

Theo quy tắc nhân, tập G có 6.39 = 234 (phần tử).

⇒ n(G) = 234.

P(G)=n(G)n(Ω)=2348 145 060=391 357 510.

Vậy xác suất để bạn An trúng giải nhất là 391 357 510.

 

Từ khóa :
toán 10
Đánh giá

0

0 đánh giá