Với giải Tình huống mở đầu trang 83 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Tình huống mở đầu trang 83 Toán 10 Tập 2: Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, trúng giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}.
Lời giải:
Phép thử ở tình huống trên là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45.
Không gian mẫu Ω là tập hợp tất cả các tập con có sáu phần tử của tập hợp {1; 2; …; 45}.
Khi đó số phần tử của Ω là n(Ω) = = 8 145 060.
Gọi F: “ Bạn An trúng giải độc đắc”, khi đó bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.
Chỉ có một kết quả thuận lợi cho biến cố F là: {5; 13; 20; 31; 32; 35}.
⇒ n(F) = 1.
⇒.
Vậy xác suất để bạn An trúng giải độc đắc là .
Gọi G: “ Bạn An trúng giải nhất”, khi đó bạn An chọn bộ sáu số trong đó có năm số thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một số còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Khi đó G là tập hợp tất cả các tập con gồm sáu phần tử của tập hợp {1; 2; …; 45}, trong đó năm phần tử của nó thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một phần tử còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Mỗi phần tử của tập G được hình thành qua hai công đoạn:
+ Công đoạn 1: Chọn năm phần tử trong tập {5; 13; 20; 31; 32; 35}, có = 6 (cách chọn).
+ Công đoạn 2: Chọn một phần tử còn lại trong 39 phần tử không thuộc tập {5; 13; 20; 31; 32; 35}, có = 39 (cách chọn).
Theo quy tắc nhân, tập G có 6.39 = 234 (phần tử).
⇒ n(G) = 234.
⇒.
Vậy xác suất để bạn An trúng giải nhất là .
Xem thêm lời giải sách giáo khoa Toán 10 Kết nối tri thức hay, chi tiết khác:
Tình huống mở đầu trang 83 Toán 10 Tập 2: Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, trúng giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}...
Hoạt động 1 trang 83 Toán 10 Tập 2: Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G: “Bạn An trúng giải nhất” ta cần xác định n(Ω), n(F) và n(G). Liệu có thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm được không...
Luyện tập 1 trang 84 Toán 10 Tập 2: Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam...
Hoạt động 2 trang 84 Toán 10 Tập 2: Trong trò chơi “Vòng quay may mắn”, người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí: Loại xe 50 cc và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí: màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì...
Luyện tập 2 trang 85 Toán 10 Tập 2: Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh...
Luyện tập 3 trang 85 Toán 10 Tập 2: Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này...
Hoạt động 3 trang 85 Toán 10 Tập 2: Cho E là biến cố và Ω là không gian mẫu. Tính n() theo n(Ω) và n(E)...
Luyện tập 4 trang 86 Toán 10 Tập 2: Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ...
Vận dụng trang 86 Toán 10 Tập 2: Phép thử ở tình huống trên là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45....
Bài tập 9.6 trang 86 Toán 10 Tập 2: Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau:...
Bài tập 9.7 trang 86 Toán 10 Tập 2: Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:...
Bài tập 9.8 trang 86 Toán 10 Tập 2: Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen...
Bài tập 9.9 trang 86 Toán 10 Tập 2: Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối....
Bài tập 9.10 trang 87 Toán 10 Tập 2: Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn...
Bài tập 9.11 trang 87 Toán 10 Tập 2: Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm...
Bài tập 9.12 trang 87 Toán 10 Tập 2: Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gen là gen trội A và gen lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn tương ứng với hai loại gen là gen trội B và gen lặn b. Biết rằng, cây con lấy ngẫu nhiên một gen từ cây bố và một gen từ cây mẹ...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 25: Nhị thức Newton
Bài tập cuối chương 8
Bài 26: Biến cố và định nghĩa cổ điển của xác suất
Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Bài tập cuối chương 9