Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển chi tiết sách Toán 10 Tập 2 Kết nối tri thức với cuộc sống giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Lời giải:
Phép thử ở tình huống trên là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45.
Không gian mẫu Ω là tập hợp tất cả các tập con có sáu phần tử của tập hợp {1; 2; …; 45}.
Khi đó số phần tử của Ω là n(Ω) = = 8 145 060.
Gọi F: “ Bạn An trúng giải độc đắc”, khi đó bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.
Chỉ có một kết quả thuận lợi cho biến cố F là: {5; 13; 20; 31; 32; 35}.
⇒ n(F) = 1.
⇒.
Vậy xác suất để bạn An trúng giải độc đắc là .
Gọi G: “ Bạn An trúng giải nhất”, khi đó bạn An chọn bộ sáu số trong đó có năm số thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một số còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Khi đó G là tập hợp tất cả các tập con gồm sáu phần tử của tập hợp {1; 2; …; 45}, trong đó năm phần tử của nó thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một phần tử còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Mỗi phần tử của tập G được hình thành qua hai công đoạn:
+ Công đoạn 1: Chọn năm phần tử trong tập {5; 13; 20; 31; 32; 35}, có = 6 (cách chọn).
+ Công đoạn 2: Chọn một phần tử còn lại trong 39 phần tử không thuộc tập {5; 13; 20; 31; 32; 35}, có = 39 (cách chọn).
Theo quy tắc nhân, tập G có 6.39 = 234 (phần tử).
⇒ n(G) = 234.
⇒.
Vậy xác suất để bạn An trúng giải nhất là .
Lời giải:
Bằng cách dùng tổ hợp ta tính được n(Ω) = = 8 145 060; n(F) = 1 ; n(G) = 234.
Vậy, nếu sử dụng cách liệt kê, ta vẫn có thể liệt kê hết các phần tử của ba tập hợp F, G và Ω tuy nhiên việc liệt kê sẽ dài và mất rất nhiều thời gian, dễ bị nhầm lẫn đặc biệt là tập hợp Ω có tới 8 145 060 phần tử.
Lời giải:
Không gian mẫu Ω là tập hợp các tập con gồm 6 học sinh trong 12 học sinh.
Khi đó n(Ω)= = 924.
Xét biến cố A: “6 học sinh được chọn số học sinh nữ bằng số học sinh nam”:
Để số học sinh nữ bằng số học sinh nam thì chọn 3 nữ và 3 nam.
Mỗi phần tử của A được hình thành từ hai công đoạn:
Công đoạn 1: Chọn 3 học sinh trong 5 học sinh nữ, có = 10.
Công đoạn 2: Chọn 3 học sinh trong 7 học sinh nam, có = 35.
Theo quy tắc nhân, ta có 35.10 = 350 (cách chọn)
⇒ Tập A có 350 phần tử.
⇒ n(A) = 350.
⇒ .
Phép thử T là quay hai bánh xe. Hãy vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
Lời giải:
Phép thử T là quay hai bánh xe.
Quay bánh xe thứ nhất có 2 kết quả có thể xảy ra: Loại xe 50 cc và Loại 110 cc.
Ứng với từng kết quả quay của bánh xe thứ nhất có 4 kết quả quay của bánh xe thứ hai: xanh, đỏ, đen, trắng.
Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:
Các kết quả có thể là: Xe 50 cc màu xanh; Xe 50 cc màu đỏ; Xe 50 cc màu đen; Xe 50 cc màu trắng; Xe 110 cc màu xanh; Xe 110 cc màu đỏ; Xe 110 cc màu đen; Xe 110 cc màu trắng.
⇒ Ω = { Xe 50 cc màu xanh; Xe 50 cc màu đỏ; Xe 50 cc màu đen; Xe 50 cc màu trắng; Xe 110 cc màu xanh; Xe 110 cc màu đỏ; Xe 110 cc màu đen; Xe 110 cc màu trắng}.
Lời giải:
Theo HĐ2, ta có n(Ω) = 8.
Gọi biến cố A: “Người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh” .
Khi đó, có hai kết quả thuận lợi cho biến cố A là: Loại xe 110 cc màu trắng; Loại xe 110 cc màu xanh;
⇒ A = {Loại xe 110 cc màu trắng; Loại xe 110 cc màu xanh}.
⇒ n(A) = 2 ⇒ .
Vậy xác suất để người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh là 0,25.
a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.
b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.
Lời giải:
a) Kí hiệu T, G tương ứng là con trai và con gái.
Vì ba người con trong gia đình đó có thể là trai hoặc gái nên ta có sơ đồ hình cây sau:
Từ sơ đồ hình cây ta thấy có 8 kết quả có thể là: TTT; TTG; TGT; TGG; GTT; GTG; GGT; GGG.
⇒ Ω = {TTT; TTG; TGT; TGG; GTT; GTG; GGT; GGG}.
⇒ n(Ω) = 8.
b) Gọi biến cố A: “ Gia đình đó có một con trai và hai con gái”.
Khi đó A = {GTG; TGG; GGT}
⇒ n(A) = 3. Khi đó .
Vậy xác suất để gia đình đó có một con trai và hai con gái là .
Lời giải:
Vì E và là hai biến cố đối nên n() + n(E) = n(Ω).
⇒ n() = n(Ω) – n(E).
Vậy n() = n(Ω) – n(E).
a) Vẽ sơ đồ cây để mô tả các phần tử của không gian mẫu.
b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố là tập con nào của không gian mẫu?
c) Tính P(M) và P()
Lời giải:
a) Kí hiệu 1, 2, 3 tương ứng là thẻ mang số 1, 2, 3. Khi đó ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:
Các kết quả có thể khi rút mỗi hộp một thẻ là: 121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332.
⇒ Ω ={121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332}
⇒ n(Ω) = 12.
b) M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”.
Khi đó M không xảy ra khi trong ba thẻ rút ra không có thẻ số 1.
Suy ra biến cố đối của biến cố M là : “Trong ba thẻ rút ra không có thẻ số 1”.
⇒ = {222; 232; 322; 332}
c) Với = {222; 232; 322; 332}
⇒ n() = 4.
⇒ .
Mặt khác, ta có P() = 1 – P(M)
⇒ P(M) = 1 – P() = 1 – = .
Vậy P(M) = , P() = .
Lời giải:
Không gian mẫu Ω là tập hợp tất cả các tập con có sáu phần tử của tập hợp {1; 2; …; 45}.
Khi đó số phần tử của Ω là n(Ω) = = 8 145 060.
Gọi F: “ Bạn An trúng giải độc đắc”, khi đó bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.
Chỉ có một kết quả thuận lợi cho biến cố F là: {5; 13; 20; 31; 32; 35}.
⇒ n(F) = 1.
⇒.
Vậy xác suất để bạn An trúng giải độc đắc là .
Gọi G: “ Bạn An trúng giải nhất”, khi đó bạn An chọn bộ sáu số trong đó có năm số thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một số còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Khi đó G là tập hợp tất cả các tập con gồm sáu phần tử của tập hợp {1; 2; …; 45}, trong đó năm phần tử của nó thuộc tập hợp {5; 13; 20; 31; 32; 35}, còn một phần tử còn lại không thuộc tập hợp {5; 13; 20; 31; 32; 35}.
Mỗi phần tử của tập G được hình thành qua hai công đoạn:
+ Công đoạn 1: Chọn năm phần tử trong tập {5; 13; 20; 31; 32; 35}, có = 6 (cách chọn).
+ Công đoạn 2: Chọn một phần tử còn lại trong 39 phần tử không thuộc tập {5; 13; 20; 31; 32; 35}, có = 39 (cách chọn).
Theo quy tắc nhân, tập G có 6.39 = 234 (phần tử).
⇒ n(G) = 234.
⇒.
Vậy xác suất để bạn An trúng giải nhất là .
a) A: “Con đầu là gái”;
b) B: “Có ít nhất một người con trai”.
Lời giải:
Kí hiệu T, G tương ứng là con trai và con gái.
Vì ba người con trong gia đình đó có thể là trai hoặc gái nên ta có sơ đồ hình cây sau:
Từ sơ đồ hình cây ta thấy có 8 kết quả có thể là: TTT; TTG; TGT; TGG; GTT; GTG; GGT; GGG.
⇒ Ω = {TTT; TTG; TGT; TGG; GTT; GTG; GGT; GGG}.
⇒ n(Ω) = 8.
a) Với biến cố A: “Con đầu là con gái”
⇒ A = { GTT; GTG; GGT; GGG}
⇒ n(A) = 4.
⇒ .
Vậy P(A) = 0,5.
b) Xét biến cố B: “Có ít nhất một người con trai”.
⇒ B ={TTT; TTG; TGT; TGG; GTT; GTG; GGT}.
⇒ n(B) = 7.
⇒ .
Vậy P(B) = .
a) C: “Cả hai thẻ rút được đều mang số lẻ”;
b) D: “Cả hai thẻ rút được đều mang số chẵn”.
Lời giải:
Rút hai thẻ từ 11 thẻ có = 55 (cách) suy ra n(Ω) = 55.
a) Với biến cố C: “Cả hai thẻ rút được đều mang số lẻ”;
Do cả hai thẻ rút được đều mang số lẻ, nên 2 thẻ rút ra thuộc tập {11; 13; 15; 17; 19}.
⇒ Số cách chọn là: = 10 ⇒ n(C) = 10.
⇒ .
Vậy P(C)= .
b) Với biến cố D: “Cả hai thẻ rút được đều mang số chẵn”.
Do cả hai thẻ được rút ra đều mang số chẵn, nên 2 thẻ rút ra thuộc tập {10; 12; 14; 16; 18; 20}
⇒ Số cách chọn là: = 15 ⇒ n(D) = 15.
⇒ .
Vậy P(D) = .
Lời giải:
Chọn 6 viên bi trong 12 viên bi thì số cách chọn là: = 924 cách, hay n(Ω) = 924.
Gọi biến cố A: “Trong 6 viên bi được chọn ra có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”.
Để chọn ra 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen” ta phải thực hiện qua các công đoạn sau:
+ Công đoạn 1: Chọn 3 viên bi trắng trong 6 viên, số cách: = 20.
+ Công đoạn 2: Chọn 2 viên bi đỏ trong 4 viên, số cách: = 6.
+ Công đoạn 3: Chọn 1 viên bi đen trong 2 viên, số cách: = 2.
Theo quy tắc nhân ta có số cách chọn ra 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen” là: 20.6.2 = 240 (cách).
⇒ n(A) = 240.
⇒ .
Vậy P(A) = .
Bài tập 9.9 trang 86 Toán 10 Tập 2: Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của các biến cố sau:
F: “Đồng xu xuất hiện mặt ngửa”;
G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”.
Lời giải:
a) Kí hiệu S là mặt sấp, N là mặt ngửa; 1, 2, 3, 4, 5,6 lần lượt là số chấm xuất hiện của con xúc xắc.
Khi đó, ta có sơ đồ cây mô tả các phần tử của không gian mẫu như sau:
Từ sơ đồ hình cây ta thấy có 12 kết quả có thể là: S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6.
⇒ Ω = { S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6}.
⇒ n(Ω) = 12.
b)
+ Với biến cố F: “Đồng xu xuất hiện mặt ngửa”
⇒ F = {N1; N2; N3; N4; N5; N6}.
⇒ n(F) = 6
⇒ .
+ Với biến cố G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”.
⇒G = {S1; S2; S3; S4; S5; S6; N5}.
⇒ n(G) = 7
⇒ .
Vậy P(F) = 0,5; P(G) = .
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của biến cố “Hai bạn vào quán X, bạn còn lại vào quán Y”.
Lời giải:
Gọi X, Y tương ứng là sự lựa chọn quán X, quán Y.
Khi đó, ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau :
Từ sơ đồ hình cây ta thấy có 8 các kết quả có thể là: XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY.
⇒ Ω = {XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY}.
⇒ n(Ω) = 8.
b) Gọi biến cố A: “Hai bạn vào quán X, bạn còn lại vào quán Y”.
Khi đó A = {XXY; XYX; YXX}
⇒ n(A) = 3
⇒ .
Vậy P(A) = .
Lời giải:
Gieo hai con xúc xắc :
+ Xúc xắc 1 có thể xuất hiện một trong sáu mặt, do đó có 6 kết quả có thể.
+ Xúc xắc 2 có thể xuất hiện một trong sáu mặt, do đó có 6 kết quả có thể.
Theo quy tắc nhân, ta có số kết quả có thể là : 6.6 = 36.
Suy ra n(Ω) = 6.6 = 36.
Gọi biến cố A: “ít nhất một con xúc xắc xuất hiện mặt 6 chấm”
Nếu biến cố A không xảy ra thì biến cố : “Không có con xúc xắc nào xuất hiện mặt 6 chấm” xảy ra.
Do đó A và là hai biến cố đối.
Xét biến cố : “Không có con xúc xắc nào xuất hiện mặt 6 chấm” .
Biến cố xảy ra khi :
+ Con xúc xắc thứ nhất xuất hiện một trong 5 mặt từ mặt một chấm đến mặt năm chấm, có =5 (kết quả).
+ Con xúc xắc thứ hai xuất hiện một trong 5 mặt từ mặt một chấm đến mặt năm chấm, có =5 (kết quả).
Theo quy tắc nhân ta có 5.5 = 25 kết quả thuận lợi cho biến cố .
⇒ n() = 25.
⇒ n(A) = n(Ω) – n() = 36 – 25 = 11.
⇒ .
Vậy P(A) = .
Phép thử là cho lai hai loại đậu Hà Lan, trong đó cả cây bố và cây mẹ đều có kiểu gen là (Aa,Bb) và kiểu hình là hạt màu vàng và trơn. Giả sử các kết quả có thể là đồng khả năng. Tính xác suất để cây con cũng có kiểu hình là hạt màu vàng và trơn.
Lời giải:
Ta có sơ đồ hình cây mô tả kết quả có thể của kiểu gen ứng với màu hạt của cây con như sau:
Từ sơ đồ hình cây, ta thấy các kết quả có thể của kiểu gen ứng với màu hạt của cây con là 4 nhánh cây: AA, Aa, aA, aa.
Tương tự, ta có sơ đồ hình cây mô tả kết quả có thể của kiểu gen tương ứng với dạng hạt của cây con như sau:
Từ sơ đồ hình cây, ta thấy các kết quả có thể của kiểu gen ứng với dạng hạt của cây con là 4 nhánh cây: BB, Bb, bB, bb.
Khi đó, các kết quả có thể của phép thử được liệt kê trong bảng sau:
Dạng hạt Màu hạt |
BB |
Bb |
bB |
bb |
AA |
(AA,BB) |
(AA,Bb) |
(AA,bB) |
(AA,bb) |
Aa |
(Aa,BB) |
(Aa,Bb) |
(Aa,bB) |
(Aa,bb) |
aA |
(Aa,BB) |
(Aa,Bb) |
(Aa,bB) |
(Aa, bb) |
aa |
(aa,BB) |
(aa,Bb) |
(aa,bB) |
(aa,bb) |
Mỗi ô là một kết quả có thể về kiểu gen của cây con. Không gian mẫu là tập hợp 16 ô của bảng trên. Do đó, không gian mẫu của phép thử là:
Ω ={(AA,BB); (AA,Bb); (AA,bB); (AA,bb); (Aa,BB); (Aa,Bb); (Aa,bB); (Aa,bb); (Aa,BB); (Aa,Bb); (Aa,bB); (Aa, bb); (aa,BB); (aa,Bb); (aa,bB); (aa,bb)}.
⇒ n(Ω) = 16.
Biến cố A: “Cây con có kiểu hình là hạt màu vàng và trơn”.
Để cây con có kiểu hình là hạt màu vàng và trơn thì trong kiểu gen màu hạt có ít nhất một gen trội A và trong kiểu gen hình dạng hạt có ít nhất một gen trội B.
Do đó, các kết quả thuận lợi cho biến cố A là: (AA,BB); (AA,Bb); (AA,bB); (Aa,BB), (Aa,Bb); (Aa,bB); (aA,BB); (aA,Bb); (aA,bB).
⇒ A = {(AA,BB); (AA,Bb); (AA,bB); (Aa,BB), (Aa,Bb); (Aa,bB); (aA,BB); (aA,Bb); (aA,bB)}.
⇒ n(A) = 9
⇒ .
Vậy xác suất để cây con cũng có kiểu hình là hạt màu vàng và trơn là .
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 26: Biến cố và định nghĩa cổ điển của xác suất
Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển
1. Sử dụng phương pháp tổ hợp
Trong nhiều bài toán, để tính số phần tử của không gian mẫu, của các biến cố, ta thường sử dụng các quy tắc đếm, các công thức tính hoán vị, chỉnh hợp và tổ hợp.
Ví dụ:Một hộp có 6 viên bi trắng và 3 viên bi đen. Lấy ngẫu nhiên từ hộp 2 viên bi. Tính xác suất của biến cố E: “Lấy được 1 viên bi trắng”;
Hướng dẫn giải
Trong hộp có 6 viên bi trắng và 3 viên bi đen nên có tổng số bi là 6 + 3 = 9 viên bi.
Lấy ngẫu nhiên 2 viên bi từ hộp, tức là lấy 2 trong 9 viên bi, ta có = 36 cách.
⇒ n(Ω) = 36.
Biến cố E: “Lấy được 1 viên bi trắng”.
Khi đó:
+ Lấy được 1 viên bi màu trắng trong 6 viên bi trắng, có cách.
+ Lấy 1 viên bi còn lại không phải màu trắng nên lấy 1 trong 3 viên bi màu đen, ta có: cách.
Theo quy tắc nhân, ta có .= 18 cách lấy 2 viên bi trong đó có 1 viên bi màu trắng.
⇒ n(E) = 18
⇒ P(E) = = .
Vậy xác suất của biến cố E: “ Lấy được 1 viên bi trắng” là .
2. Sử dụng sơ đồ hình cây
Trong một bài toán, phép thử T được hình thành từ một vài phép thử, chẳng hạn: gieo xúc xắc liên tiếp bốn lần; lấy ba viên bi, mỗi viên từ một hộp; …. Khi đó ta sử dụng sơ đồ hình cây để có thể mô tả đầy đủ, trực quan không gian mẫu và biến cố cần tính xác suất.
Ví dụ: Hai bạn Nam có một đồng xu, bạn Vân có một con xúc xắc 6 mặt (đồng xu và con xúc xắc đều cân đối, đồng chất). Nam gieo đồng xu, sau đó Vân gieo con xúc xắc.
a) Vẽ sơ đồ hình cây mô tả không gian mẫu của phép thử.
b) Tính xác suất của biến cố A: “Đồng xu xuất hiện mặt sấp” và B: “Con xúc sắc xuất hiện mặt 5 chấm”.
Hướng dẫn giải
a) Nam gieo một đồng xu thì có 2 kết quả có thể là đồng xu xuất hiện mặt sấp (S) hoặc đồng xu xuất hiện mặt ngửa (N).
Vân gieo con xúc xắc thì có 6 kết quả có thể là xuất hiện mặt 1; 2; 3;…; 6 chấm.
Khi đó, ta có sơ đồ hình cây mô tả các kết quả có thể của phép thử như sau:
Từ sơ đồ hình cây ta thấy các kết quả có thể của phép thử là:
(S,1); (S,2); (S,3); (S,4); (S,5); (S,6); (N,1); (N,2); (N,3); (N,4); (N,5); (N,6).
⇒ Không gian mẫu của phép thử là: Ω = {(S,1); (S,2); (S,3); (S,4); (S,5); (S,6); (N,1); (N,2); (N,3); (N,4); (N,5); (N,6)}.
⇒ n(Ω) = 12.
Vậy không gian mẫu của phép thử là: Ω = {(S,1); (S,2); (S,3); (S,4); (S,5); (S,6); (N,1); (N,2); (N,3); (N,4); (N,5); (N,6)}.
b) Với biến cố A: “Đồng xu xuất hiện mặt sấp”
Ta thấy có các kết quả thuận lợi cho A là: (S,1); (S,2); (S,3); (S,4); (S,5); (S,6).
⇒ A = {(S,1); (S,2); (S,3); (S,4); (S,5); (S,6)}.
⇒ n(A) = 6
⇒P(A) == = .
Với biến cố B: “Con xúc sắc xuất hiện mặt 5 chấm”.
Ta thấy có những kết quả thuận lợi cho biến cố B là: (S,5); (N,5)
⇒ B = {(S,5); (N,5)}
⇒ n(B) = 2
⇒ P(B) == = .
Vậy xác suất của biến cố A: “Đồng xu xuất hiện mặt sấp” là ; xác suất của biến cố B: “Con xúc sắc xuất hiện mặt 5 chấm” là .
3. Xác suất của biến cố đối
Cho E là một biến cố. Xác suất của biến cố liên hệ với xác suất của biến cố E bởi công thức sau : P(E) = 1 – P().
Chú ý: Trong một số bài toán, nếu tính trực tiếp xác suất của biến cố gặp khó khăn, ta có thể tính gián tiếp bằng cách tính xác suất của biến cố đối của nó.
Ví dụ: Trong hộp có một số quả bóng màu đỏ và màu xanh có kích thước và khối lượng như nhau. Nếu lấy ngẫu nhiên hai quả bóng từ hộp thì xác xuất để hai quả này cùng màu là 0,4. Hỏi xác xuất để hai quả bóng lấy ra khác màu là bao nhiêu.
Hướng dẫn giải
Vì biến cố “Lấy được hai quả bóng cùng màu” là biến cố đối của biến cố “Lấy được hai quả bóng khác màu”.
Do đó, xác xuất để hai quả bóng lấy ra khác màu là: 1 - 0, 4 = 0,6.
Vậy xác xuất để hai quả bóng lấy ra khác màu là 0,6.