Giải Toán 10 trang 90 Tập 1 Kết nối tri thức

463
Với Giải toán lớp 10 trang 90 Tập 1 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
 
Giải Toán 10 trang 90 Tập 1 Kết nối tri thức

Bài 5.24 trang 90 Toán lớp 10: Bảng sau cho biết dân số của các tỉnh/thành phố Đồng bằng Bắc Bộ năm 2018 (đơn vị triệu người)

 Bài 5.23 trang 89 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

a) Tìm số trung bình và trung vị của mẫu số liệu trên.

b) Giải thích tại sao số trung bình và trung vị lại có sự sai khác nhiều.

c) Nên sử dụng số trung bình hay trung vị để đại diện cho dân số của các tỉnh thuộc Đồng bằng Bắc Bộ?

Phương pháp giải:

a)

- Sắp xếp lại mẫu số liệu theo thứ tự không giảm.

- Áp dụng công thức số trung bình của mẫu số liệu x1,x2,...,xn:

X¯=x1+x2+...+xnn

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

b) Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác) thì sẽ làm cho số trung bình và trung vị có sự khác nhau rõ rệt.

c) Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác), người ta không dùng số trung bình để đo xu thế trung tâm mà dùng trung vị.

Lời giải:

a)

Sắp xếp lại:

0,81

0,97

1,09

1,19

1,25

1,27

1,79

1,81

1,85

2,01

7,52

Số trung bình Có 11 tỉnh thành nên n=11.

X¯=7,52+...+1,19+...+0,9711=1,96

Trung vị: 1,27

b) Ta thấy 7,52 lệch hẳn so với giá trị trung bình nên đây là giá trị bất thường của mẫu số liệu

=> Số trung bình và trung vị lại có sự sai khác nhiều

c) Nên sử dụng trung vị để đại diện cho dân số của các tỉnh thuộc Đồng bằng Bắc Bộ.

Bài 5.25 trang 90 Toán lớp 10: Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông ở mỗi tỉnh/thành phố thuộc Đồng bằng sông Hồng và Đồng bằng sông Cửu Long năm 2017:

Đồng bằng sông Hồng:

187 34 35 46 54 57 37 39 23 57 27

Đồng bằng sông Cửu Long:

33 34 33 29 24 39 42 24 23 19 24 15 26

(Theo Tổng cục Thống kê)

a) Tính số trung bình, trung vị, các tứ phân vị, mốt, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn cho mỗi mẫu số liệu trên.

b) Tại sao số trung bình của hai mẫu số liệu có sự sai khác nhiều trong khi trung vị thì không?

c) Tại sao khoảng biến thiên và độ lệch chuẩn của hai mẫu số liệu khác nhau nhiều trong khi khoảng từ phân vị thì không?

Phương pháp giải:

a)

- Sắp xếp lại mẫu số liệu theo thứ tự không giảm.

- Áp dụng công thức số trung bình của mẫu số liệu x1,x2,...,xn:

X¯=x1+x2+...+xnn

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

Để tìm các tứ phân vị của mẫu số liệu có n giá trị cho dưới dạng bảng tần số, ta làm như sau:

+ Tìm trung vị. Giá trị này là Q2

+ Tìm trung vị của nửa số liệu bên trái Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q1

+ Tìm trung vị của nửa số liệu bên phải Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q3

Mốt: Giá trị có tần số lớn nhất.

Khoảng biến thiên R = Số lớn nhất – Số nhỏ nhất

Khoảng tứ phân vị:  ΔQ=Q3Q1

Phương sai s2=(x1x¯)2+(x2x¯)2+...+(xnx¯)2n

Độ lệch chuẩn: s=s2

b) Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác) thì sẽ làm cho số trung bình và trung vị có sự khác nhau rõ rệt.

c) Khoảng biến thiên và độ lệch chuẩn dễ bị ảnh hưởng bởi giá trị bất thường, còn khoảng tứ phân vị thì không.

Lời giải:

 

a) Đồng bằng sông Hồng:

23 27 34 35 37 39 46 54 57 57 187

n=11.

Số trung bình: X¯54,18

Trung vị: 39

Tứ phân vị: Q1=34,Q3=57

Mốt là 57 vì có tần số là 2 (xuất hiện 2 lần).

Khoảng biến thiên: R=187-23=164

Khoảng tứ phân vị: ΔQ=Q3Q1=5734=23

Ta có bảng sau:

Giá trị

Độ lệch

Bình phương độ lệch

23

31,18

972,192

27

27,18

738,752

34

20,18

407,232

35

19,18

367,872

37

17,18

295,152

39

15,18

230,432

46

8,18

66,912

54

0,18

0,032

57

2,82

7,952

57

2,82

7,952

187

132,82

17641,2

Tổng

20735,64

Độ lệch chuẩn: 144

Đồng bằng sông Cửu Long:

15 19 23 24 24 24 26 29 33 33 34 39 42

n=13

Số trung bình: X¯28,1

Trung vị: 26

Tứ phân vị: Q1=23,5,Q3=33,5

Mốt là 24 vì có tần số là 3 (xuất hiện 3 lần).

Khoảng biến thiên: R=42-15=27

Khoảng tứ phân vị: ΔQ=Q3Q1=33,523,5=10

Ta có bảng sau:

Giá trị

Độ lệch

Bình phương độ lệch

15

13,1

171,61

19

9,1

82,81

23

5,1

26,01

24

4,1

16,81

24

4,1

16,81

24

4,1

16,81

26

2,1

4,41

29

0,9

0,81

33

4,9

24,.01

33

4,9

24,01

34

5,9

34,81

39

10,9

118,81

42

13,9

193,21

Tổng

730,93

Độ lệch chuẩn: 27,04

b) Số trung bình sai khác vì ở Đồng bằng sông Hồng thì có giá trị bất thường là 187 (cao hơn hẳn giá trị trung bình), còn ở Đồng bằng sông Cửu Long thì không có giá trị bất thường.

Chính giá trị bất thường làm nên sự sai khác đó, còn trung vị không bị ảnh hưởng đến giá trị bất thường nên trung vị ở hai mẫu đều như nhau.

c) Giá trị bất thường ảnh hưởng đến khoảng biến thiên và độ lệch chuẩn, còn với khoảng tứ phân vị thì không (khoảng tứ phân vị đo 50% giá trị ở chính giữa).

Bài 5.26 trang 90 Toán lớp 10: Tỉ lệ trẻ em suy dinh dưỡng (tính theo cân nặng ứng với độ tuổi) của 10 tỉnh thuộc Đồng bằng sông Hồng được cho như sau:

5,5 13,8 10,2 12,2 11,0 7,4 11,4 13,1 12,5 13,4

(Theo Tổng cục Thống kê)

a) Tính số trung bình, trung vị, khoảng biến thiên và độ lệch chuẩn của mẫu số liệu trên.

b) Thực hiện làm tròn đến hàng đơn vị cho các giá trị trong mẫu số liệu. Sai số tuyệt đối của phép làm tròn này không vượt qua bao nhiêu?

Phương pháp giải:

a)

- Sắp xếp lại mẫu số liệu theo thứ tự không giảm.

- Áp dụng công thức số trung bình của mẫu số liệu x1,x2,...,xn:

X¯=x1+x2+...+xnn

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

Khoảng biến thiên R = Số lớn nhất – Số nhỏ nhất

Phương sai s2=(x1x¯)2+(x2x¯)2+...+(xnx¯)2n

Độ lệch chuẩn: s=s2

b) Làm tròn và tìm tìm độ chính xác d.

Lời giải:

a)

Sắp xếp:

5,5 7,4 10,2 11,0 11,4 12,2 12,5 13,1 13,4 13,8

n=10

Số trung bình: X¯=11,05

Trung vị: 11,8

Khoảng biến thiên: R=13,8-5,5=8,3

Giá trị

Độ lệch

Bình phương độ lệch

5,5

5,55

30,8025

7,4

3,65

13,3225

10,2

0,85

0,7225

11,0

0,05

0,0025

11,4

-0,35

0,1225

12,2

-1,15

1,3225

12,5

-1,45

2,1025

13,1

-2,05

4,2025

13,4

-2,35

5,5225

13,8

-2,75

7,5625

Tổng

65,6850 

Độ lệch chuẩn: 8,1

b) Làm trò các số liệu trong mẫu:

Giá trị

Làm tròn

Sai số

5,5

6

0,5

7,4

7

0,4

10,2

10

0,2

11,0

11

0

11,4

11

0,4

12,2

12

0,2

12,5

13

0,5

13,1

13

0,1

13,4

13

0,4

13,8

14

0,2

Sai số tuyệt đối của các phép làm tròn không vượt quá 0,5.

Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Giải Toán 10 trang 89 Tập 1

Giải Toán 10 trang 90 Tập 1 

Đánh giá

0

0 đánh giá