Bài 5.17 trang 89 Toán lớp 10: Khi cần một bao gạo bằng một cân treo với thang chia 0,2 kg thì độ chính xác d là
A. 0,1 kg.
B. 0,2 kg
C. 0,3 kg.
D. 0,4 kg
Phương pháp giải:
Trong các phép đo, độ chính xác d của số gần đúng bằng một nửa đơn vị của thước đo.
Lời giải:
Thang chia là 0,2kg thì d=0,1kg
Chọn A.
Bài 5.18 trang 89 Toán lớp 10: Trong hai mẫu số liệu, mẫu nào có phương sai lớn hơn thì có độ lệch chuẩn lớn hơn, đúng hay sai?
A. Đúng.
B. Sai.
Phương pháp giải:
Độ lệch chuẩn bằng căn bậc hai của phương sai.
Lời giải:
Độ lệch chuẩn bằng căn bậc hai của phương sai.
=> Mẫu nào có phương sai lớn hơn thì có độ lệch chuẩn lớn hơn.
Chọn A.
Bài 5.19 trang 89 Toán lớp 10: Có 25% giá trị của mẫu số liệu nằm giữa và đúng hay sai?
A. Đúng.
B. Sai.
Phương pháp giải:
Các tứ phân vị:
Lời giải:
Có 50% giá trị của mẫu số liệu nằm giữa và
=> chọn B.
Bài 5.20 trang 89 Toán lớp 10: Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
A. Số trung bình.
B. Mốt.
C. Trung vị.
D. Độ lệch chuẩn.
Lời giải:
Độ lệch chuẩn đo độ phân tán của mẫu số liệu
Số trung bình, mốt, trung vị đo xu thế trung tâm của mẫu số liệu.
Bài 5.21 trang 89 Toán lớp 10: Điểm trung bình môn học kì I một số môn học của bạn An là 8; 9; 7; 6; 5; 7; 3. Nếu An được cộng thêm mỗi môn 0,5 điểm chuyên cần thì các số đặc trưng nào sau đây của mẫu
Số liệu không thay đổi?
B. Trung vị.
C. Độ lệch chuẩn.
D. Tứ phân vị.
Lời giải:
Trung vị tăng 0,5. Tứ phân vị cũng tăng 0,5.
Khi cộng thêm mỗi môn 0,5 điểm chuyên cần thì điểm trung bình tăng 0,5
=> Độ lệch của mỗi giá trị so với số trung bình vẫn không đổi
=> Độ lệch chuẩn không thay đổi.
Chọn C.
B. Tự luận
Bài 5.22 trang 89 Toán lớp 10: Lương khởi điểm của 5 sinh viên vừa tốt nghiệp tại một trường đại học (đơn vị triệu đồng) là:
3,5 9,2 9,2 9,5 10,5
a) Giải thích tại sao nên dùng trung vị để thể hiện mức lương khởi điểm của sinh viên tốt nghiệp từ trường đại học này.
b) Nên dùng khoảng biến thiên hay khoảng tứ phân vị để đo độ phân tán? Vì sao?
Phương pháp giải:
a) - Tính mức lương trung bình.
- Tìm giá trị bất thường.
- Nếu xuất hiện giá trị bất thường (cao hơn hẳn hoặc thấp hơn hẳn giá trị trung bình) thì nên dùng trung vị.
b) Khoảng biến thiên dễ bị ảnh hưởng bởi các giá trị bất thường.
Dùng số đặc trưng không bị ảnh hưởng bởi các giá trị bất thường để đo độ phân tán.
Lời giải:
a) Giá trị trung bình
Nên dùng trung vị để thể hiện mức lương khởi điểm của sinh viên tốt nghiệp từ trường đại học này vì có giá trị bất thường là 3,5 (lệch hẳn so với giá trị trung bình)
b) Nên dùng khoảng tứ phân vị để đo độ phân tán vì độ phân tán không bị ảnh hướng bởi giá trị bất thường.
Bài 5.23 trang 89 Toán lớp 10: Điểm Toán và điểm Tiếng Anh của 11 học sinh lớp 10 được cho trong bảng sau:
Hãy so sánh mức độ học đều của học sinh trong môn Tiếng Anh và môn Toán thông qua các số đặc trưng: khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn.
Phương pháp giải:
Sắp xếp theo thứ tự không giảm
Khoảng biến thiên R=Số lớn nhất – Số nhỏ nhất
Khoảng tứ phân vị:
Phương sai
Độ lệch chuẩn:
Lời giải:
Sắp xếp lại:
5 |
31 |
37 |
43 |
43 |
57 |
62 |
63 |
78 |
80 |
91 |
Khoảng biến thiên R=91-5=86
Ta có:
Khoảng tứ phân vị:
Số trung bình
Ta có bảng sau:
Giá trị |
Độ lệch |
Bình phương độ lệch |
5 |
48,64 |
2365,85 |
31 |
22,64 |
512,57 |
37 |
16,64 |
276,89 |
43 |
10,64 |
113,21 |
43 |
10,64 |
113,21 |
57 |
3,36 |
11,29 |
62 |
8,36 |
69,89 |
63 |
9,36 |
87,61 |
78 |
24,36 |
593,41 |
80 |
26,36 |
694,85 |
91 |
37,36 |
1395,77 |
Tổng |
6234,55 |
Độ lệch chuẩn là 79
Môn Toán:
Sắp xếp lại:
37 |
41 |
49 |
55 |
57 |
62 |
64 |
65 |
65 |
70 |
73 |
Khoảng biến thiên R=73-37=36
Ta có:
Khoảng tứ phân vị:
Số trung bình
Ta có bảng sau:
Giá trị |
Độ lệch |
Bình phương độ lệch |
37 |
-21 |
441 |
41 |
-17 |
289 |
49 |
-9 |
81 |
55 |
-3 |
9 |
57 |
-1 |
1 |
62 |
4 |
16 |
64 |
6 |
36 |
65 |
7 |
49 |
65 |
7 |
49 |
70 |
12 |
144 |
73 |
15 |
225 |
Tổng |
1340 |
Độ lệch chuẩn là 36,6
Từ các số trên ta thấy mức độ học tập môn Tiếng Anh không đều bằng môn Toán.Độ lệch chuẩn là 36,6
Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác: