Với Giải toán 10 trang 58 Tập 2 Chân trời sáng tạo chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải toán 10 trang 58 Tập 2 Chân trời sáng tạo
Bài 5 trang 58 Toán lớp 10: Cho đường thẳng d có phương trình tham số
Tìm giao điểm của d với hai trục tọa độ
Phương pháp giải:
+) A là giao của d với Ox => A(a;0) thuộc d.
+) A là giao của d với Oy => A(0;a') thuộc d.
Lời giải:
+) Gọi A là giao điểm của đường thẳng d với trục tung
Suy ra tọa độ của A là:
Thay vào phương trình ta có:
Vậy giao điểm của d với trục tung là
+) Gọi B là giao điểm của đường thẳng d với trục hoành
Suy ra tọa độ của B là:
Thay vào phương trình ta có:
Vậy giao điểm của d với trục hoành là
Bài 6 trang 58 Toán lớp 10: Tìm số đo của góc giữa hai đường thẳng và trong các trường hợp sau:
a) và
b) và
c) và
Phương pháp giải:
Bước 1: Xác định 2 vectơ pháp tuyến (hoặc chỉ phương) của hai đường thẳng đã cho:
Bước 2: Tính cos góc giữa hai đường thẳng bằng công thức => suy ra góc giữa 2 đt.
Lời giải:
a) Ta có vectơ pháp tuyến của hai đường thẳng và lần lượt là
Ta có
b) Ta có vectơ pháp tuyến của hai đường thẳng và lần lượt là
Ta có
Suy ra
c) Ta có vectơ chỉ phương của hai đường thẳng và lần lượt là
Bài 7 trang 58 Toán lớp 10: Tính khoảng cách từ điểm M đến đường thẳng trong các trường hợp sau:
a) và
b) và
c) và
d) và
Phương pháp giải:
Bước 1: Xác định phương trình tổng quát của
Bước 2: khoảng cách từ đến d là:
Lời giải:
a) Khoảng cách từ đến là:
b) có phương trình tham số nên có phương trình tổng quát là
Suy ra khoảng cách từ điểm đến đường thẳng là
c) có phương trình tham số nên có phương trình tổng quát là
Suy ra khoảng cách từ điểm đến đường thẳng là
d) Khoảng cách từ đến là:
Bài 8 trang 58 Toán lớp 10: Tính khoảng cách giữa hai đường thẳng và
Phương pháp giải:
+) Khoảng cách giữa hai đường thẳng song song là khoảng cách một điểm bất kì từ đường thẳng này tới đường thẳng còn lại
+) khoảng cách từ đến d là:
Lời giải:
Ta có vectơ pháp tuyến của hai đường thẳng là suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia
Chọn điểm , suy ra
Vậy khoảng cách giữa hai đường thẳng và là
Bài 9 trang 58 Toán lớp 10: Trong mặt phẳng Oxy cho điểm di động trên đường thẳng . Tính khoảng cách ngắn nhất từ điểm đến điểm S.
Phương pháp giải:
Khi M nằm trên đường thẳng d thì khoảng ngắn nhất là đoạn vuông góc
Lời giải:
Điểm S nằm trên đường thẳng d , nên khi S di động trên đoạn thẳng d thì SM ngắn nhất khi
Nên khoảng cách ngắn nhất từ điểm đến điểm S là khoảng cách từ điểm đến d
Khoảng cách đó là:
Vậy khi S di động trên đường thẳng d thì khoảng cách ngắn nhất từ điểm đến điểm S là 2.
Bài 10 trang 58 Toán lớp 10: Một người đang viết chương trình cho trò chơi đá bóng robot. Gọi là 3 vị trí trên màn hình
a) Viết phương trình các đường thẳng AB, AC, BC
b) Tính góc hợp bởi hai đường thẳng AB và AC
c) Tính khoảng cách từ điểm A đến đường thẳng BC
Phương pháp giải:
a) Tìm VTPT (hoặc VTCP) => Lập PT tổng quát (hoặc tham số) của đt.
b) Xác định góc giữa hai đường thẳng thông qua cặp VTPT ( hoặc VTCP):
c) Khoảng cách từ đến BC: là
Lời giải:
a) Ta có:
+) Đường thẳng AB nhận vectơ làm phương trình chỉ phương và đi qua điểm nên có phương trình tham số là:
+) Đường thẳng AC nhận vectơ làm phương trình chỉ phương và đi qua điểm nên có phương trình tham số là:
+) Đường thẳng BC nhận vectơ làm phương trình chỉ phương và đi qua điểm nên có phương trình tham số là:
b) Ta có vectơ pháp tuyến của hai đường thẳng AB và AC lần lượt là:
Vậy góc giữa hai đường thẳng AB và AC là
c) Đường thẳng BC nhận vectơ làm vectơ chỉ phương nên có vectơ pháp tuyến là và đi qua , suy ra phương trình tổng quát của đường thẳng BC là:
Khoảng cách từ đến đường thẳng BC là:
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Giải toán lớp 10 trang 46 Tập 2
Giải toán lớp 10 trang 47 Tập 2
Giải toán lớp 10 trang 48 Tập 2
Giải toán lớp 10 trang 49 Tập 2
Giải toán lớp 10 trang 51 Tập 2
Giải toán lớp 10 trang 53 Tập 2
Giải toán lớp 10 trang 54 Tập 2
Giải toán lớp 10 trang 56 Tập 2
Giải toán lớp 10 trang 57 Tập 2