B. Tự luận
Bài 2.12 trang 32 Toán lớp 10: Biểu diễn miền nghiệm của bất phương trình trên mặt phẳng tọa độ.
Phương pháp giải:
Thu gọn bất phương trình về dạng tổng quát.
Biểu diễn miền nghiệm của bất phương trình:
Bước 1: Vẽ đường thẳng (nét đứt).
Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c = 0 thì ta lấy điểm A(-1;-1) để thay vào.
Nếu A thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm A đã lấy.
Lời giải:
Biểu diễn miền nghiệm của bất phương trình:
Bước 1: Vẽ đường thẳng d:(nét liền)
Bước 2: Lấy điểm O(0;0) thay vào biểu thức x-5y ta được: x-5y=0-5.0=0<-2
=> Điểm O thuộc miền biểu diễn của bất phương trình.
Vậy miền biểu diễn của bất phương trình đã cho là nửa mặt phẳng có bờ là đường thẳng d và chứa gốc tọa độ O.
Bài 2.13 trang 32 Toán lớp 10: Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng tọa độ
Phương pháp giải:
Biểu diễn các miền nghiệm của từng bất phương trình và
Bước 1: Vẽ đường thẳng
Bước 2: Lấy điểm một điểm không thuộc đường thẳng và thay vào bất phương trình cần xác định miền nghiệm.
Bước 3: Nếu tọa độ điểm đó thỏa mãn bất phương trình thì miền nghiệm của bất phương trình chứa điểm đó.
Lời giải:
Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d: x+y=1 (nét đứt)
+ Vì 0+0=0
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d’:
+ Vì 0+0=0
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d’ không chứa gốc tọa độ O.
Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho (Không đường thẳng d’).
Chú ý
Đường thẳng x+y=1 là đường thẳng nét đứt.
Bài 2.14 trang 32 Toán lớp 10: Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng tọa độ.
Từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức với thỏa mãn hệ trên.
Phương pháp giải:
- Biểu diễn các miền nghiệm của từng bất phương trình ; ; và trên cùng một mặt phẳng tọa độ.
Bước 1: Vẽ đường thẳng
Bước 2: Lấy điểm một điểm không thuộc đường thẳng và thay vào bất phương trình cần xác định miền nghiệm.
Bước 3: Nếu tọa độ điểm đó thỏa mãn bất phương trình thì miền nghiệm của bất phương trình chứa điểm đó.
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
Bước 1: Xác định các đỉnh của đa giác
Bước 2: Tính giá trị tại các đỉnh đó và kết luận.
Lời giải:
- Biểu diễn miền nghiệm của hệ bất phương trình
Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với
A(1;4); B(5;4), C(5;-6); D(-1;0).
Giá trị F tại các điểm A, B, C, D lần lượt là:
Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -11.
Bài 2.15 trang 32 Toán lớp 10: Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu, trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Hỏi bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất?
Phương pháp giải:
Bước 1: Gọi x là số tiền mua trái phiếu ngân hàng và y là số tiền mua trái phiếu doanh nghiệp và biểu diễn các dữ kiện bài cho thành hệ bất phương trình tương ứng.
Bước 2: Lập biểu thức về lợi nhuận thu được F theo x và y. Từ đó tìm giá trị lớn nhất của F.
Lời giải:
|
Trái phiếu chính phủ |
Trái phiếu ngân hàng |
Trái phiếu doanh nghiệp |
Lãi suất |
7%/năm |
8%/năm |
12%/năm |
Bước 1:
1,2 tỉ đồng=1200 (triệu đồng)
Gọi x là số tiền mua trái phiếu ngân hàng và y là số tiền mua trái phiếu doanh nghiệp.
Khi đó .
Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu, trái phiếu chính phủ nên số tiền đầu tư trái phiếu chính phủ là (triệu đồng)
Số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có:
Bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên
Từ điều kiện của bài toán ta có số tiền bác An đầu tư trái phiếu phải thỏa mãn hệ:
Xác định miền nghiệm là miền tứ giác OABC với:
O(0;0); A(3
00;0); B(250;200); C(0;200).
Bước 2: Lợi nhuận thu được sau một năm là
Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình
Thay tọa độ các điểm O, A, B, C vào biểu thức F(x;y) ta được:
=> F đạt giá trị lớn nhất là 96,5 nếu x=250 và y=200.
Vậy bác An nên đầu tư 250 triệu đồng trái phiếu ngân hàng, 200 triệu trái phiếu doanh nghiệp và 750 trái phiếu chính phủ.
Chú ý:
Đổi về đơn vị triệu đồng.
Bài 2.16 trang 32 Toán lớp 10: Một công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm mới trong một tháng trên các đài phát thanh và truyền hình. Biết cùng một thời lượng quảng cáo, số người mới quan tâm đến sản phẩm trên truyền hình gấp 8 lần trên đài phát thanh, tức là quảng cáo trên truyền hình có hiệu quả gấp 8 lần trên đài phát thanh.
Đài phát thanh chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây với chi phí là 80 nghìn đồng/giây. Đài truyền hình chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 360 giây với chi phí là 400 nghìn đồng/giây.
Công ty cần đặt thời gian quảng cáo trên các đài phát thanh và truyền hình như thế nào để hiệu quả nhất?
Gợi ý: Nếu coi hiệu quả khi quảng cáo 1 giây trên đài phát thanh là 1 (đơn vị) thì hiệu quả khi quảng cáo 1 giây trên đài truyền hình là 8 (đơn vị). Khi đó hiệu quả quảng cáo x (giây) trên đài phát thanh và y (giây) trên truyền hình là F(x, y) = x + 8y. Ta cần tìm giá trị lớn nhất của hàm F(x, y) với x, y thoả mãn các điều kiện trong đề bài.
Phương pháp giải:
- Gọi x và y là số giây quảng cáo trên đài phát thanh và trên truyền hình.
- Dựa vào số tiền dự chi tối đa, thời lượng lập hệ bất phương trình tương ứng.
- Lập biểu thức F biểu diễn hiệu quả quảng cáo theo x và y.
- Tìm giá trị lớn nhất của hàm F(x;y) thỏa mãn các điều kiện trong đề bài.
Lời giải:
|
Đài phát thanh |
Truyền hình |
Chi phí nhận quảng cáo |
80 nghìn đồng /giây |
400 nghìn đồng/giây |
Hiệu quả quảng cáo |
1 (đơn vị) |
8 (đơn vị) |
Gọi x và y là số giây quảng cáo trên đài phát thanh và trên truyền hình.
Khi đó
160 triệu đồng=160000 (nghìn đồng)
Chi phí quảng cáo x giây trên đài phát thanh và y giây trên truyền hình là (nghìn đồng)
Vì công ty dự chi tối đa 160 triệu đồng nên ta có
Đài phát thanh chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây nên ta có:
Đài truyền hình chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 360 giây nên ta có:
Ta có hệ bất phương trình:
Xác định miền nghiệm là miền ngũ giác OABCD với:
A(900;0); B(900;220); C(200;360); D(0;400)
Hiệu quả quảng cáo là:
Ta có:
Vậy công ty cần đặt thời gian quảng cáo trên đài phát thanh là 0 giây và trên truyền hình là 400 giây thì hiệu quả nhất.
Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác: