Giải Toán 10 trang 96 Tập 1 Cánh diều

373

Với Giải Toán lớp 10 trang 96 Tập 1 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải Toán 10 trang 96 Tập 1 Cánh diều

Luyện tập 3 trang 96 Toán lớp 10: Chứng minh rằng với hai vectơ bất kì a,  b , ta có:

a+b2=a2+2a.b+b2;

ab2=a22a.b+b2;

ab.a+b=a2b2.

Lời giải:

+ Ta có:

a+b2=a+b.a+b  (bình phương vô hướng của vectơ a+b)

=a.a+a.b+b.a+b.b

=a2+a.b+a.b+b2 (áp dụng tính chất giao hoán)

=a2+2a.b+b2

Vậy a+b2=a2+2a.b+b2.

+ Ta có:

ab2=ab.ab (bình phương vô hướng của vectơ ab)

=a.aa.bb.a+b.b

=a2a.ba.b+b2  (áp dụng tính chất giao hoán)

 =a22a.b+b2

Vậy ab2=a22a.b+b2.

+ Ta có:

aba+b=a.a+a.b+b.a+b.b

=a2+a.ba.bb.b (áp dụng tính chất giao hoán)

=a2b2.

Vậy ab.a+b=a2b2.

3. Một số ứng dụng

Luyện tập 4 trang 96 Toán lớp 10: Sử dụng tích vô hướng, chứng minh minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi BC2 = AB2 + AC2

Lời giải:

+ Ta chứng minh định lí thuận:

Có tam giác ABC vuông ở A, cần chứng minh BC2 = AB2 + AC2.

Sử dụng tích vô hướng, chứng minh minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi

Tam giác ABC vuông tại A nên BAC^=90°.

Ta có: BC2=ACAB2=AC2+AB22AC.AB

Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cosAC,AB

                   = AB2 + AC2 – 2 . AC . AB . cosA

                   = AB2 + AC2 – 2 . AC . AB . cos 90°

                   = AB2 + AC2 – 2 . AC . AB . 0

                   = AB2 + AC2.

Vậy BC2 = AB2 + AC2.

+ Ta chứng minh định lí đảo:

Cho tam giác ABC có BC2 = AB2 + AC2 thì tam giác ABC vuông tại A.

Sử dụng tích vô hướng, chứng minh minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi

Ta có: BC2=ACAB2=AC2+AB22AC.AB

Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos AC,AB  (*)

Mà theo giả thiết ta có: BC2 = AB2 + AC2 nên thay vào (*) ta được:

BC2 = BC2 – 2 . AC . AB . cosAC,AB

Suy ra: 2 . AC . AB . cosAC,AB  = 0

cosAC,AB=0  hay  cosBAC^=0

Do đó: BAC^=90°.

Vậy tam giác ABC vuông tại A.

Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:

Giải Toán 10 trang 93 Tập 1

Giải Toán 10 trang 95 Tập 1

Giải Toán 10 trang 97 Tập 1

Giải Toán 10 trang 98 Tập 1

Đánh giá

0

0 đánh giá