Giải Toán 7 trang 70 Tập 1 Cánh diều

604

Với Giải toán lớp 7 trang 70 Tập 1 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải Toán 7 trang 70 Tập 1 Cánh diều

Bài 10 trang 70 Toán lớp 7: Chị Phương định mua 2 kg táo với số tiền định trước. Khi vào siêu thị đúng thời điểm được khuyến mại nên giá táo được giảm 25%. Với số tiền đó, chị Phương mua được bao nhiêu ki-lô-gam táo?

Phương pháp giải:

Số táo mua được và giá táo là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của hai đại lượng tỉ lệ nghịch: x1. y1 = x2. y2

Lời giải:

Gọi số táo mua được là x (kg) (x > 0)

Giả sử giá táo trước giảm giá là a thì giá táo sau khi giảm giá là a – 0,25a = 0,75a

Vì số táo . giá táo = số tiền mua táo (không đổi) nên số táo và giá táo là hai đại lượng tỉ lệ nghịch.

Áp dụng tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

2.a = x. 0,75a nên x = 2.a0,75.a=83 (thỏa mãn)

Vậy chị Phương mua được 83 kg táo

Bài 11 trang 70 Toán lớp 7: Cứ 15 phút, chị Lan chạy được 2,5 km. Hỏi trong 1 giờ, chị chạy được bao nhiêu ki – lô- mét? Biết rằng vận tốc chạy của chị Lan là không đổi

Phương pháp giải:

Với vận tốc không đổi thì quãng đường và thời gian là 2 đại lượng tỉ lệ thuận

Chú ý đơn vị

Lời giải:

Gọi số km mà chị Lan chạy được trong 1 giờ = 60 phút là x (km) (x > 0)

Vì vận tốc không đổi nên quãng đường và thời gian là hai đại lượng tỉ lệ thuận nên theo tính chất của hai đại lượng tỉ lệ thuận, ta có:

2,515=x60x=2,5.6015=10(thoả mãn)

Vậy trong 1 giờ, chị Lan chạy được 10 km

Bài 12 trang 70 Toán lớp 7: Một công nhân trong 30 phút làm được 20 sản phẩm. Hỏi để làm được 50 sản phẩm người đó cần bao nhiêu phút? Biết năng suất làm việc của người đó không đổi.

Phương pháp giải:

Năng suất làm việc không đổi thì thời gian và số sản phẩm làm được là 2 đại lượng tỉ lệ thuận

Lời giải:

Gọi x (sản phẩm) và y (phút) lần lượt là số sản phẩm và thời gian làm ra số sản phẩm tương ứng của một người công nhân (x ∈ ℕ*; y > 0).

Giả sử x1 = 20 sản phẩm làm trong y1 = 30 phút

Và x2 = 50 sản phẩm làm trong y2 phút

Vì số sản phẩm và thời gian làm số sản phẩm đó tỉ lệ thuận với nhau nên theo tính chất tỉ lệ thuận ta có: x1y1=x2y2

Thay x1 = 20; y1 = 30; x2 = 50 ta có: 2030=50y2

Suy ra y2=30.5020=75

Vậy trong 75 phút người đó sẽ làm được 50 sản phẩm.

Bài 13 trang 70 Toán lớp 7: Cứ đổi 1 158 000 đồng Việt Nam thì được 50 đô la Mỹ.

Để có 750 đô la Mỹ thì cần đổi bao nhiêu đồng Việt Nam?

Phương pháp giải:

Số tiền đô la Mỹ và số tiền Việt Nam quy đổi cho nhau là 2 đại lượng tỉ lệ thuận

Lời giải:

Gọi số tiền Việt Nam cần có để đổi được 750 đô la Mỹ là x (đồng) (x >0)

Vì số tiền đô la Mỹ và số tiền Việt Nam quy đổi cho nhau là 2 đại lượng tỉ lệ thuận nên theo tính chất của 2 đại lượng tỉ lệ thuận, ta có:

115800050=x750x=1158000.75050=17370000 (thỏa mãn)

Vậy số tiền Việt Nam cần có để đổi được 750 đô la Mỹ là 17 370 000 đồng

Bài 14 trang 70 Toán lớp 7: Trong tháng trước, cứ 6 giờ, dây chuyền làm ra 1 000 sản phẩm. Trong tháng này, do được cải tiến nên năng suất của dây chuyền bằng 1,2 lần năng suất tháng trước. Hỏi trong tháng này để làm ra 1 000 sản phẩm như thế thì dây chuyền đó cần bao nhiêu giờ?

Phương pháp giải:

Với cùng khối lượng công việc, năng suất và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của hai đại lượng tỉ lệ nghịch: x1. y1 = x2. y2

Lời giải:

Gọi thời gian dây chuyền cần để hoàn thành 1 000 sản phẩm là x (giờ) (x > 0)

Giả sử năng suất của tháng trước là a thì năng suất của tháng này là 1,2.a

Vì khối lượng công việc không đổi nên năng suất và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch nên theo tính chất của 2 đại lượng tỉ lệ nghịch, ta có:

6.a = x. 1,2a nên x=6.a1,2.a=5 (thỏa mãn)

Vậy cần 5 giờ để dây chuyền hoàn thành 1 000 sản phẩm như thế

Bài 15 trang 70 Toán lớp 7: Đồng trắng là một hợp kim của đồng với nickel. Một hợp kim đồng trắng có khối lượng của đồng và nickel tỉ lệ với 9 và 11. Tính khối lượng của đồng và nickel cần dùng để tạo ra 25 kg hợp kim đó.

Phương pháp giải:

+ Gọi khối lượng của đồng và nickel cần dùng là x, y (kg) (x,y > 0)

+ Biểu diễn mối liên hệ giữa khối lượng của đồng và nickel

Sử dụng tính chất của dãy tỉ số bằng nhau: ab=cd=a+cb+d

Lời giải:

Gọi khối lượng của đồng và nickel cần dùngđể tạo ra 25 kg hợp kim đó là x, y (kg) (x,y > 0), ta có x + y = 25

Vì khối lượng của đồng và nickel tỉ lệ với 9 và 11 nên x9=y11

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có

x9=y11=x+y9+11=2520=1,25x=9.1,25=11,25y=11.1,25=13,75

Vậy cần 11,25 kg đồng và 13,75 kg nickel

Bài 16 trang 70 Toán lớp 7: Cho ba hình chữ nhật có cùng diện tích. Biết chiều rộng của ba hình chữ nhật tỉ lệ với ba số 1;2;3. Tính chiều dài của mỗi hình chữ nhật đó, biết tổng chiều dài của ba hình chữ nhật là 110 cm.

Phương pháp giải:

+ Gọi chiều dài 3 hình chữ nhật lần lượt là x,y,z (x,y,z > 0)

+ Với các hình chữ nhật có cùng diện tích, chiều rộng và chiều dài là 2 đại lượng tỉ lệ nghịch.

Sử dụng tính chất của dãy tỉ số bằng nhau: ab=cd=ef=a+c+eb+d+f

Lời giải:

Gọi chiều dài 3 hình chữ nhật lần lượt là x,y,z (cm) (x,y,z > 0).

Do tổng chiều dài của ba hình chữ nhật là 110 cm nên x+y+z=110

Vì 3 hình chữ nhật có: chiều dài . chiều rộng = diện tích (không đổi) nên chiều rộng và chiều dài là 2 đại lượng tỉ lệ nghịch.

Áp dụng tính chất 2 đại lượng tỉ lệ nghịch, ta có:

1.x = 2.y = 3.z

1.x6=2.y6=3.z6x6=y3=z2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x6=y3=z2=x+y+z6+3+2=11011=10x=6.10=60;y=3.10=30;z=2.10=20

Vậy chiều dài của mỗi hình chữ nhật đó lần lượt là 60 cm, 30 cm, 20 cm.

Bài 17 trang 70 Toán lớp 7: Hình 14a mô tả hình dạng của một hộp sữa và lượng sữa chứa trong hộp đó. Hình 14b mô tả hình dạng của một hộp sữa và lượng sữa chứa trong hộp khi đặt hộp ngược lại. Tính tỉ số của thể tích sữa có trong hộp và thể tích của cả hộp.

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2 (ảnh 1)

Phương pháp giải:

Tính tỉ lệ thể tích phần chứa sữa và phần không chứa sữa.

Với diện tích đáy không đổi thì thể tích và chiều cao của hình hộp là 2 đại lượng tỉ lệ thuận

Lời giải:

Xét hình 9b, phần hộp không chứa sữa có dạng hình hộp chữ nhật với đáy là đáy của hộp sữa và chiều cao là 12 – 7 = 5 (cm)

Xét hình 9a, phần hộp chứa sữa có dạng hình hộp chữ nhật với đáy là đáy của hộp sữa và chiều cao là 6 cm.

Vì diện tích đáy không đổi thì thể tích và chiều cao của hình hộp là 2 đại lượng tỉ lệ thuận nên thể tích phần hộp không chứa sữa với phần hộp chứa sữa là tỉ lệ của chiều cao hình hộp không chứa sữa và chiều cao hình hộp có chứa sữa và là 56. Tức là thể tích phần hộp chứa sữa là 6 phần, phần không chứa sữa là 5 phần, thể tích cả hộp là: 5+6 = 11 phần

Như vậy, tỉ số của của thể tích sữa có trong hộp và thể tích của cả hộp là 611.

Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác:

Giải Toán 7 trang 69 Tập 1

Đánh giá

0

0 đánh giá