Với Giải toán lớp 7 trang 111 Tập 2 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 111 Tập 2 Kết nối tri thức
Bài 8 trang 111 Toán lớp 7 Tập 2: Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
a) Chứng minh rằng . Từ đó suy ra AM = BC và AM // BC.
b) Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.
c) Chứng minh rằng ba điểm M, A, N thẳng hàng và A là trung điểm của đoạn MN.
Lời giải:
a) Do D là trung điểm của AB nên AD = BD.
Xét ∆ADM và ∆BDC có:
AD = BD (chứng minh trên).
(2 góc đối đỉnh).
DM = DC (theo giả thiết).
Suy ra ∆ADM = ∆BDC (c - g - c).
Do đó AM = BC (2 cạnh tương ứng) và (2 góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AM // BC.
b) Do E là trung điểm của AC nên AE = CE.
Xét ∆AEN và ∆CEB có:
AE = CE (chứng minh trên).
(2 góc đối đỉnh).
EN = EB (theo giả thiết).
Suy ra ∆AEN = ∆CEB (c - g - c).
Do đó AN = BC (2 cạnh tương ứng) và (2 góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AN // BC.
c) Ta có AM // BC, AN // BC mà AM cắt AN tại A nên M, A, N thẳng hàng và A nằm giữa M và N.
Lại có AM = AN nên A là trung điểm của MN.
Vậy ta có điều phải chứng minh.
Bài 9 trang 111 Toán lớp 7 Tập 2: Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.
a) Chứng minh AH ⊥ BC.
b) Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho BM = CN. Chứng minh rằng ∆ABM = ∆ACN.
c) Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.
Lời giải:
a) Do H là trung điểm của BC nên BH = CH.
Tam giác ABC cân tại A nên AB = AC và .
Xét ∆ABH và ∆ACH có:
AB = AC (chứng minh trên).
BH chung.
BH = CH (chứng minh trên).
Suy ra ∆ABH = ∆ACH (c - c - c).
Do đó (2 góc tương ứng).
Mà nên .
Do đó AH ⊥ BC.
b) Ta có là góc ngoài tại đỉnh B của nên .
là góc ngoài tại đỉnh C của ∆ABC nên .
Mà nên .
Xét ∆ABM và ∆ACN có:
AB = AC (chứng minh trên).
(chứng minh trên).
BM = CN (theo giả thiết).
Suy ra ∆ABM = ∆ACN (c - g - c).
c) Do ∆ABM = ∆ACN (c - g - c) nên (2 góc tương ứng).
Xét ∆BAI vuông tại I và ∆CAK vuông tại A:
(chứng minh trên).
AB = AC (chứng minh trên).
Suy ra ∆BAI = ∆CAK (cạnh huyền - góc nhọn).
Do đó AI = AK (2 cạnh tương ứng).
∆AIK có AI = AK nên ∆AIK cân tại A.
∆ABM = ∆ACN nên AM = AN (2 cạnh tương ứng).
∆ABM có AM = AN nên ∆AMN cân tại A.
∆AMN cân tại A nên .
Xét ∆AMN có: .
Suy ra do đó (1).
∆AIK cân tại A nên .
Xét ∆AIK có: .
Suy ra do đó (2).
Từ (1) và (2) suy ra .
Mà hai góc này ở vị trí đồng vị nên IK // MN.
Vậy ta có điều phải chứng minh.
Bài 10 trang 111 Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
a) ∆ABH = ∆DBH.
b) Tam giác AED cân.
c) EM > ED.
d) Giả sử = 60o. Chứng minh rằng tam giác BCM là tam giác đều và CE = 2EA.
Lời giải:
a) Do H là trung điểm của AD nên AH = DH.
Xét ∆ABH và ∆DBH có:
AB = DB (theo giả thiết).
BH chung.
AH = DH (chứng minh trên).
Suy ra ∆ABH = ∆DBH (c - c - c).
b) Do ∆ABH = ∆DBH (c - c - c) nên (2 góc tương ứng).
Xét ∆ABE và ∆DBE có:
AB = DB (theo giả thiết).
(chứng minh trên).
BE chung.
Suy ra ∆ABE = ∆DBE (c - g - c).
Do đó AE = DE (2 cạnh tương ứng).
có AE = DE nên ∆AED cân tại E.
c) Xét ∆AME vuông tại A có EM là cạnh huyền nên EM là cạnh lớn nhất trong tam giác.
Do đó EM > EA.
Mà EA = ED nên EM > ED.
d) Do ∆AME = ∆DBE (c - g - c) nên .
Do đó ED ⊥ BC hay MD ⊥ BC.
Xét ∆BCM có CA ⊥ BM, MD ⊥ BC.
Mà CA cắt MD tại E nên E là trực tâm của .
Khi đó BE ⊥ MC.
Ta có nên BE là tia phân giác của .
∆BCM có BE vừa là đường cao, vừa là tia phân giác nên ∆BCM cân tại B.
Khi đó nếu = 60o thì cân tại B có = 60o nên là tam giác đều.
Khi đó E vừa là trực tâm, vừa là trọng tâm của ∆BCM.
Do đó CE = 2EA.
Thống kê và xác suất
Bài 11 trang 111 Toán lớp 7 Tập 2: Bình thu thập số liệu về số học sinh phổ thông của cả nước từ năm 2015 đến năm 2020 và vẽ được biểu đồ sau:
a) Số học sinh phổ thông cả nước từ năm 2015 đến năm 2020 có xu thế tăng hay giảm?
b) Hãy lập bảng thống kê về số lượng học sinh phổ thông của cả nước từ năm 2015 đến năm 2020.
c) Theo em, Bình đã dùng cách nào trong các cách thu thập dữ liệu đã học để có được số liệu trên?
Lời giải:
a) Số học sinh phổ thông cả nước từ năm 2015 đến năm 2020 có xu thế tăng.
b) Bảng thống kê số học sinh phổ thông cả nước từ năm 2015 đến năm 2020:
Năm |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
Số lượng (nghìn học sinh) |
15 354 |
15 514 |
15 923 |
16 558 |
17 042 |
17 551 |
c) Bình đã sử dụng phương pháp thu thập số liệu từ nguồn internet.
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác: