Chứng minh rằng khi α thay đổi, tồn tại một đường tròn cố định luôn tiếp xúc với đường thẳng Δ

842

Với giải ý b Bài 7.26 trang 42 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 21: Đường tròn trong mặt phẳng tọa độ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 7.26 trang 42 SBT Toán 10 Tập 2: Cho đường thẳng Δ: x . sinα° + y . cosα° – 1 = 0, trong đó α là một số thực thuộc khoảng (0; 180).

b) Chứng minh rằng khi α thay đổi, tồn tại một đường tròn cố định luôn tiếp xúc với đường thẳng Δ.

Lời giải:

b)

Giả sử (C) là đường tròn có tâm O và bán kính R = 1.

Với α là một số thực thuộc khoảng (0; 180) có thể thay đổi thì có:

d(O, Δ) = 1 = R không đổi

nên (C) luôn tiếp xúc với Δ.

Vậy phương trình đường tròn (C) cần tìm là x2 + y2 = 1.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7.19 trang 41 SBT Toán 10 Tập 2: Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:...

Bài 7.20 trang 41 SBT Toán 10 Tập 2Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó...

Bài 7.21 trang 41 SBT Toán 10 Tập 2: Viết phương trình của đường tròn (C) trong các trường hợp sau...

Bài 7.22 trang 41 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) có tâm thuộc đường thẳng Δ: x + y – 1 = 0 và đi qua hai điểm A(6; 2), B(–1; 3)...

Bài 7.23 trang 42 SBT Toán 10 Tập 2Cho đường tròn (C) có phương trình x2 + y2 + 6x – 4y – 12 = 0. Viết phương trình tiếp tuyến Δ của (C) tại điểm M(0; –2)...

Bài 7.24 trang 42 SBT Toán 10 Tập 2: Cho điểm A(4; 2) và hai đường thẳng d: 3x + 4y – 20 = 0, d’: 2x + y = 0...

Bài 7.25 trang 42 SBT Toán 10 Tập 2Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là:...

Bài 7.26 trang 42 SBT Toán 10 Tập 2: Cho đường thẳng Δ: x . sinα° + y . cosα° – 1 = 0, trong đó α là một số thực thuộc khoảng (0; 180)...

Bài 7.27 trang 42 SBT Toán 10 Tập 2Vị trí của một chất điểm M tại thời điểm t (t trong khoảng thời gian từ 0 phút đến 180 phút) có toạ độ là (3 + 5sin t°; 4 + 5cos t°). Tìm toạ độ của chất điểm M khi M ở cách xa gốc toạ độ nhất...

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Bài 23: Quy tắc đếm

Đánh giá

0

0 đánh giá