Với giải Bài 7.26 trang 42 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 21: Đường tròn trong mặt phẳng tọa độ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 21: Đường tròn trong mặt phẳng tọa độ
Bài 7.26 trang 42 SBT Toán 10 Tập 2: Cho đường thẳng Δ: x . sinα° + y . cosα° – 1 = 0, trong đó α là một số thực thuộc khoảng (0; 180).
a) Tính khoảng cách từ gốc toạ độ O đến đường thẳng Δ.
b) Chứng minh rằng khi α thay đổi, tồn tại một đường tròn cố định luôn tiếp xúc với đường thẳng Δ.
Lời giải:
a)
Khoảng cách từ O(0; 0) đến đường thẳng Δ là
Do (sinαo)2 + (cosαo)2 = 1 với α là một số thực thuộc khoảng (0; 180).
b)
Giả sử (C) là đường tròn có tâm O và bán kính R = 1.
Với α là một số thực thuộc khoảng (0; 180) có thể thay đổi thì có:
d(O, Δ) = 1 = R không đổi
nên (C) luôn tiếp xúc với Δ.
Vậy phương trình đường tròn (C) cần tìm là x2 + y2 = 1.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 7.21 trang 41 SBT Toán 10 Tập 2: Viết phương trình của đường tròn (C) trong các trường hợp sau...
Bài 7.25 trang 42 SBT Toán 10 Tập 2: Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là:...
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
Bài 21: Đường tròn trong mặt phẳng tọa độ