Với lời giải SBT Toán 10 trang 14 Tập 2 chi tiết trong Bài 3: Tổ hợp sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 3: Tổ hợp
Bài 24 trang 14 SBT Toán 10 Tập 2:
Tính số đường chéo của một đa giác lồi có 12 đỉnh.
Lời giải:
Đa giác lồi có 12 đỉnh thì có 12 cạnh.
Số cách chọn 2 đỉnh trong 12 đỉnh là một tổ hợp chập 2 của 12.
Suy ra số cách chọn 2 đỉnh trong 12 đỉnh là: (cách chọn).
Vậy số đường chéo cần tìm là .
Bài 25 trang 14 SBT Toán 10 Tập 2:
Cho đa giác lồi n đỉnh (n > 3). Biết rằng, số đường chéo của đa giác đó là 170. Tìm n.
Lời giải:
Số đường chéo của đa giác lồi n đỉnh là một cặp đỉnh (không tính n cạnh) được chọn trong n đỉnh của đa giác lồi nên ta có .
Theo đề, ta có số đường chéo của đa giác đó là 170.
Tức là, .
Suy ra .
Khi đó (n – 1).n – 2n = 340.
Vì vậy n2 – 3n – 340 = 0.
Suy ra n = 20 hoặc n = –17.
Vì n > 3 nên ta nhận n = 20.
Vậy n = 20 là giá trị cần tìm.
Bài 26 trang 14 SBT Toán 10 Tập 2:
Bạn Nam đến cửa hàng mua 2 chiếc ghế loại A. Tại cửa hàng, ghế loại A màu xanh có 20 chiếc và ghế loại A màu đỏ có 15 chiếc. Hỏi bạn Nam có bao nhiêu cách chọn mua 2 chiếc ghế loại A?
Lời giải:
Cửa hàng đó có tất cả 20 + 15 = 35 (chiếc ghế).
Mỗi cách chọn 2 chiếc ghế trong tổng số 35 chiếc là một tổ hợp chập 2 của 35.
Vậy số cách chọn 2 chiếc ghế loại A trong tổng số 35 chiếc ghế là: .
Bài 27 trang 14 SBT Toán 10 Tập 2:
Chứng minh rằng:
a) với 1 ≤ k ≤ n.
b) với 0 ≤ k ≤ n.
Lời giải:
a) Ta có
Vậy với 1 ≤ k ≤ n.
b) Ta có
Vậy với 0 ≤ k ≤ n.
Xem thêm các bài giải sách bài tập Toán 10 Cánh diều hay, chi tiết khác:
Giải SBT Toán 10 trang 13 Tập 2
Xêm thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác: