Giải SBT Toán 7 trang 116 Tập 1 Cánh diều

556

Với lời giải SBT Toán 7 trang 116 Tập 1 chi tiết trong Bài tập cuối chương 4 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài tập cuối chương 4

Bài 40* trang 116 SBT Toán 7 Tập 1: Quan sát Hình 50, trong đó vết bẩn đã xóa mất đỉnh O của góc xOy. Sử dụng định lí phát biểu trong Bài tập 26b, nêu cách vẽ đường thẳng đi qua điểm M và vuông góc với tia phân giác của góc xOy.

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Kẻ Ay’ // By, khi đó ta có xAy'^=xOy^ (hai góc đồng vị).

Vẽ tia Az là tia phân giác của góc xAy’.

Khi đó xAz^=12xAy'^=12xOy^

Vẽ tia Ot là tia phân giác của góc xOy.

Khi đó xOt^=12xOy^

Do đó xAz^=xOt^ (cùng bằng 12xOy^).

Mà xAz^ và xOt^ ở vị trí đồng vị nên Az // Ot.

Như vậy, qua điểm M kẻ đường thẳng d vuông góc với Az thì đường thẳng d là đường thẳng đi qua điểm M và vuông góc với tia phân giác của góc xOy (theo định lí phát biểu trong Bài tập 26b).

Bài 41 trang 116 SBT Toán 7 Tập 1: Quan sát Hình 51, biết Ox // HK, tia Ox là tia phân giác của góc yOK. Chứng minh hai góc OHK và OKH bằng nhau.

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải

Vì Ox là tia phân giác của góc yOK nên xOy^=xOK^

Do Ox // HK nên ta có:

• xOy^=OHK^ (hai góc đồng vị);

• xOK^=OKH^ (hai góc so le trong).

Do đó OHK^=OKH^ (cùng bằng xOy^ và xOK^).

Vậy OHK^=OKH^.

Bài 42* trang 116 SBT Toán 7 Tập 1: Tìm số đo góc QRS trong Hình 52, biết aa’ // cc’.

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Kẻ Rb’ là tia đối của tia Rb (hình vẽ trên).

• Ta có QRb^+QRb'^=180° (hai góc kề bù)

Suy ra 

QRb'^=180°QRb^=180°150°=30°.

• Do aa’ // cc’ nên dPc'^=dQa'^=30° (hai góc đồng vị)

Khi đó dPc'^=QRb'^ (cùng bằng 30°).

Mà dPc'^ và QRb'^ ở vị trí đồng vị nên bb’ // cc’.

Suy ra SRb'^+RSc'^=180° (hai góc trong cùng phía).

Do đó 

SRb'^=180°RSc'^=180°130°=50°.

• Vì hai góc QRb’ và SRb’ là hai góc kề nhau nên:

QRS^=QRb'^+SRb'^=30°+50°=80°.

Vậy QRS^°=80°.

Bài 43* trang 116 SBT Toán 7 Tập 1Cho Hình 53 có OC và DE cùng vuông góc với OD, BAO^=120°,AOD^=150°.Chứng tỏ rằng AB // OC // DE.

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Lời giải

Sách bài tập Toán 7 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

Kẻ OC’ là tia đổi của tia OC (hình vẽ trên).

• Do COD^=ODE^ (cùng bằng 90°).

Mà COD^ và ODE^ ở vị trí so le trong nên OC // DE.

Suy ra DOC'^+ODE^=180° (hai góc trong cùng phía)

Do đó 

DOC'^=180°ODE^=180°90°=90°.

• Do hai góc AOC’ và DOC’ là hai góc kề nhau nên:

AOC^+DOC^=AOD^

Suy ra 

AOC^=AOD^DOC^=150°90°=60°.

• Ta có AOC^+AOC'^=180° (hai góc kề bù)

Suy ra 

AOC^=180°AOC'^=180°60°=120°.

Do đó BAO^=AOC^ (cùng bằng 120°).

Mà BAO^ và AOC^ ở vị trí so le trong nên AB // OC.

Do OC // DE và AB // OC nên AB // OC // DE (hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau).

Vậy AB // OC // DE

Xem thêm các bài giải sách bài tập Toán 7 Cánh diều hay, chi tiết khác:

Giải SBT Toán 7 trang 114 Tập 1

Giải SBT Toán 7 trang 115 Tập 1

Đánh giá

0

0 đánh giá