Cho tam giác ABC có hai trung tuyến kẻ từ A và B vuông góc. Chứng minh rằng: a^2 + b^2 = 5c^2

8.4 K

Với giải Bài 3.14 trang 39 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 6: Hệ thức lượng trong tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 6: Hệ thức lượng trong tam giác

Bài 3.14 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có hai trung tuyến kẻ từ A và B vuông góc.

Chứng minh rằng:

a) a2 + b2 = 5c2;

b) cotC= 2 (cot A + cot B).

Lời giải:

a)

Sách bài tập Toán 10 Bài 6: Hệ thức lượng trong tam giác - Kết nối tri thức (ảnh 1)

Gọi M, N lần lượt là trung điểm của các cạnh BC, AC.

Gọi G là trọng tâm của tam giác ABC.

Khi đó AG=23AM và BG=23BN.

Áp dụng định lí Pythagore cho tam giác ABG vuông tại G (do AM  BN) có:

c2 = AB2 = AG2 + BG2

=49.AM2+49.BN2

Mà AM, BN là hai đường trung tuyến kẻ từ A và B của tam giác ABC.

Do đó theo công thức tính độ dài đường trung tuyến của tam giác ta có:

AM2=ma2=b2+c22a24 và BN2=mb2=a2+c22b24.

Suy ra c2 = 49.b2+c22a24+49.a2+c22b24

=49.b2+c22a24+a2+c22b24

=49.a2+b24+c2

Þ c2 =49.a2+b24+c2

Þ 9c2 = a2 + b2 + 4c2

Þ 5c2 = a2 + b2.

b) Theo chứng minh phần a), Bài 3.13 ta có:

cotC=a2+b2c24S

Mà 5c2 = a2 + b2 (chứng minh phần a))

Do đó cotC=5c2c24S=4c24S=c2S       (1)

Mặt khác:

cotA+cotB=b2+c2a24S+a2+c2b24S 

Þ cotA + cotB =2c24S=c22S

Þ 2(cotA + cotB) =c2S   (2)

Từ (1) và (2) ta có: cotC = 2(cotA + cotB) = c2S

Vậy cotC = 2(cotA + cotB).

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 3.7 trang 38 SBT Toán 10 Tập 1: Cho tam giác ABC có  và c = 12...

Bài 3.8 trang 38 SBT Toán 10 Tập 1: Tam giác ABC có a = 19, b = 6 và c = 15...

Bài 3.9 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có a = 4, C^=60°, b = 5...

Bài 3.10 trang 39 SBT Toán 10 Tập 1: Một tàu cá xuất phát từ đảo A, chạy 50 km theo hướng N24°E đến đảo B để lấy thêm ngư cụ, rồi chuyển hướng N36°W chạy tiếp 130 km đến ngư trường C...

Bài 3.11 trang 39 SBT Toán 10 Tập 1: Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng N80°E với vận tốc 20 km/h. Sau khi đi được 30 phút, tàu chuyển sang hướng E20°S giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà. Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômet?...

Bài 3.12 trang 39 SBT Toán 10 Tập 1: Một cây cổ thụ mọc thẳng đứng bên lề một con dốc có độ dốc 10° so với phương nằm ngang. Từ một điểm dưới chân dốc, cách gốc cây 31 m người ta nhìn đỉnh ngọn cây dưới một góc 40° so với phương nằm ngang. Hãy tính chiều cao của cây...

Bài 3.13 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng:...

Bài 3.15 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có các góc thoả mãn sinA1=sinB2=sinC3. Tính số đo các góc của tam giác...

Bài 3.16 trang 39 SBT Toán 10 Tập 1: Cho tam giác ABC có S = 2R2.sin A.sinB. Chứng minh rằng tam giác ABC là một tam giác vuông...

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Đánh giá

0

0 đánh giá