Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải bài tập Toán 12

132

Với giải Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Biểu thức toạ độ của các phép toán vectơ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ

Vận dụng 3 trang 62 Toán 12 Tập 1: Cho hình chóp S.ABC có SA  (ABC), SA = a và đáy ABC là tam giác đều cạnh a, O là trung điểm của BC. Bằng cách thiết lập hệ tọa độ như Hình 3, hãy tìm tọa độ:

a) Các điểm A, S, B, C.

b) Trung điểm M của SB và trung điểm N của SC.

c) Trọng tâm G của tam giác SBC.

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a)

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vì ABC là tam giác đều cạnh a, O là trung điểm của BC nên AO là đường cao.

Suy ra AO=a32 và OB = OC = a2 .

 OC  i cùng hướng và OC=a2 nên OC=a2i . Suy ra Ca2;0;0 .

 OB  i ngược hướng và OB=a2 nên OB=a2i . Suy ra Ba2;0;0 .

 OA  j cùng hướng và OA=a32 nên OA=a32j . Suy ra A0;a32;0

Gọi I là hình chiếu của S trên Oz.

Ta có OI = SA.

Vì OI và k cùng hướng và OI = a nên OI=ak .

Theo quy tắc hình bình hành có: OS=OA+OI=a32j+ak .

Do đó S0;a32;a .

b) Tọa độ trung điểm M của SB là

M0a22;a32+02;a+02 hay Ma4;a34;a2 .

Tọa độ trung điểm N của SC là

N0+a22;a32+02;a+02 hay Na4;a34;a2 .

c) Tọa độ trọng tâm G của tam giác SBC là:

G0a2+a23;0+a32+03;0+a+03 hay G0;a36;a3 .

Đánh giá

0

0 đánh giá